Formal Languages, Automata and Numeration Systems (ISTE)

Michel Rigo

  • 出版商: Wiley
  • 出版日期: 2014-11-17
  • 售價: $5,890
  • 貴賓價: 9.5$5,596
  • 語言: 英文
  • 頁數: 338
  • 裝訂: Hardcover
  • ISBN: 1848216157
  • ISBN-13: 9781848216150
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Formal Languages, Automaton and Numeration Systems presents readers with a review of research related to formal language theory, combinatorics on words or numeration systems, such as Words, DLT (Developments in Language Theory), ICALP, MFCS (Mathematical Foundation of Computer Science), Mons Theoretical Computer Science Days, Numeration, CANT (Combinatorics, Automata and Number Theory).
Combinatorics on words deals with problems that can be stated in a non-commutative monoid, such as subword complexity of finite or infinite words, construction and properties of infinite words, unavoidable regularities or patterns.  When considering some numeration systems, any integer can be represented as a finite word over an alphabet of digits. This simple observation leads to the study of the relationship between the arithmetical properties of the integers and the syntactical properties of the corresponding representations. One of the most profound results in this direction is given by the celebrated theorem by Cobham. Surprisingly, a recent extension of this result to complex numbers led to the famous Four Exponentials Conjecture. This is just one example of the fruitful relationship between formal language theory (including the theory of automata) and number theory.

Contents to include: • algebraic structures, homomorphisms, relations, free monoid • finite words, prefixes, suffixes, factors, palindromes
• periodicity and Fine–Wilf theorem
• infinite words are sequences over a finite alphabet
• properties of an ultrametric distance, example of the p-adic norm
• topology of the set of infinite words
• converging sequences of infinite and finite words, compactness argument
• iterated morphism, coding, substitutive or morphic words
• the typical example of the Thue–Morse word
• the Fibonacci word, the Mex operator, the n-bonacci words
• wordscomingfromnumbertheory(baseexpansions,continuedfractions,...) • the taxonomy of Lindenmayer systems
• S-adic sequences, Kolakoski word
• repetition in words, avoiding repetition, repetition threshold
• (complete) de Bruijn graphs
• concepts from computability theory and decidability issues
• Post correspondence problem and application to mortality of matrices
• origins of combinatorics on words
• bibliographic notes
• languages of finite words, regular languages
• factorial, prefix/suffix closed languages, trees and codes
• unambiguous and deterministic automata, Kleene’s theorem
• growth function of regular languages
• non-deterministic automata and determinization
• radix order, first word of each length and decimation of a regular language
• the theory of the minimal automata
• an introduction to algebraic automata theory, the syntactic monoid and the
syntactic complexity
• star-free languages and a theorem of Schu ̈tzenberger
• rational formal series and weighted automata
• context-free languages, pushdown automata and grammars
• growth function of context-free languages, Parikh’s theorem
• some decidable and undecidable problems in formal language theory
• bibliographic notes
• factor complexity, Morse–Hedlund theorem
• arithmetic complexity, Van Der Waerden theorem, pattern complexity • recurrence, uniform recurrence, return words
• Sturmian words, coding of rotations, Kronecker’s theorem
• frequencies of letters, factors and primitive morphism
• critical exponent
• factor complexity of automatic sequences
• factor complexity of purely morphic sequences
• primitive words, conjugacy, Lyndon word
• abelianisation and abelian complexity
• bibliographic notes
• automatic sequences, equivalent definitions
• a theorem of Cobham, equivalence of automatic sequences with constant
length morphic sequences
• a few examples of well-known automatic sequences
• about Derksen’s theorem
• some morphic sequences are not automatic
• abstract numeration system and S-automatic sequences
• k − ∞-automatic sequences
• bibliographic notes
• numeration systems, greedy algorithm
• positional numeration systems, recognizable sets of integers
• divisibility criterion and recognizability of N
• properties of k-recognizable sets of integers, ratio and difference of consec-
utive elements: syndeticity
• integer base and Cobham’s theorem on the base dependence of the recog-
nizability
• non-standard numeration systems based on sequence of integers
• linear recurrent sequences, Loraud and Hollander results
• Frougny’s normalization result and addition
• morphic numeration systems/sets of integers whose characteristic sequence
is morphic
• towards a generalization of Cobham’s theorem
• a few words on the representation of real numbers, β-integers, finiteness
properties
• automata associated with Parry numbers and numeration systems
• bibliographic notes
First order logic
• Presburger arithmetic and decidable theory
• Muchnik’s characterization of semi-linear sets
• Bu ̈chi’s theorem: k-recognizable sets are k-definable • extension to Pisot numeration systems
• extension to real numbers
• decidability issues for numeration systems
• applications in combinatorics on words

商品描述(中文翻譯)

《形式語言、自動機和數字系統》向讀者介紹了與形式語言理論、字串組合學或數字系統相關的研究,例如Words、DLT(語言理論發展)、ICALP、MFCS(計算機科學的數學基礎)、Mons理論計算機科學日、數字、CANT(組合學、自動機和數論)。字串組合學處理的是可以在非交換幺半群中陳述的問題,例如有限或無限字串的子字串複雜度、無限字串的構造和性質、不可避免的規律或模式。在考慮某些數字系統時,任何整數都可以表示為一個有限字串,該字串由數字字母表組成。這個簡單的觀察引導人們研究整數的算術性質與相應表示的語法性質之間的關係。在這個方向上最深刻的結果之一是由科布漢(Cobham)提出的著名定理。令人驚訝的是,將這個結果擴展到複數後,得到了著名的四指數猜想。這只是形式語言理論(包括自動機理論)和數論之間豐富關係的一個例子。

內容包括:
- 代數結構、同態、關係、自由幺半群
- 有限字串、前綴、後綴、因子、回文
- 周期性和Fine-Wilf定理
- 無限字串是有限字母表上的序列
- 超度量距離的性質,p進範數的例子
- 無窮字串集合的拓撲
- 收斂的無窮和有限字串序列,緊湊性論證
- 迭代形態、編碼、替代或形態字串
- Thue-Morse字串的典型例子
- 費波那契字串、Mex運算符、n-bonacci字串
- 來自數論的字串(基數展開、連分數等)
- Lindenmayer系統的分類
- S-進序列、Kolakoski字串
- 字串中的重複、避免重複、重複閾值
- (完全)de Bruijn圖
- 計算理論中的概念和可決定性問題
- Post對應問題及其在矩陣可達性中的應用
- 字串組合學的起源
- 參考文獻注釋
- 有限字串的語言、正則語言
- 階乘、前綴/後綴閉語言、樹和編碼
- 唯一和確定的自動機,Kleene定理
- 正則語言的增長函數
- 非確定性自動機和確定化
- 基數順序、每個長度的第一個字串和正則語言的減少
- 最小自動機理論
- 代數自動機理論、語法單子和語法復雜度的介紹
- 無星語言和Schützenberger定理
- 有理形式級數和加權自動機
- 上下文無關語言、壓縮自動機和文法
- 上下文無關語言的增長函數,Parikh定理
- 形式語言理論中的一些可決定和不可決定問題
- 參考文獻注釋
- 因子複雜度、Morse-Hedlund定理
- 算術複雜度、Van Der Waerden定理、模式複雜度
- 循環、均勻循環、返回字串
- Sturmian字串、旋轉編碼、Kronecker定理
- 字母、因子和原始形態的頻率
- 關鍵指數
- 自動序列的因子複雜度
- 純形態序列的因子複雜度
- 原始字串、共軛、Lyndon字串
- 阿貝爾化和阿貝爾複雜度
- 參考文獻注釋
- 自動序列、等價定義
- Cobham定理、自動序列與常數長度形態序列的等價性
- 幾個著名自動序列的例子
- 關於Der的一些資訊