Digital Spectral Analysis: Parametric, Non-parametric and Advanced Methods (Hardcover)
暫譯: 數位頻譜分析:參數法、非參數法與進階方法 (精裝版)
F. Castani
- 出版商: Wiley
- 出版日期: 2011-07-12
- 售價: $4,980
- 貴賓價: 9.5 折 $4,731
- 語言: 英文
- 頁數: 400
- 裝訂: Hardcover
- ISBN: 1848212771
- ISBN-13: 9781848212770
-
相關分類:
數位訊號處理 Dsp
立即出貨 (庫存=1)
買這商品的人也買了...
-
Windows Server 2008 R2 網路管理與架站$650$514 -
SQL Server 2008 R2 資料庫設計實務$620$490 -
Google Android SDK 開發範例大全, 3/e$950$751 -
Google Android 應用程式開發實戰, 3/e (適用 Android SDK 2.x/3.x)$680$537 -
Android 技術內幕-探索 Android 核心原理與系統開發$580$458 -
Kali Linux 滲透測試工具, 2/e$500$395 -
Python 程式設計入門指南 (書籍已絕版且書況較舊,不介意在下單)$520$442 -
今天不學機器學習,明天就被機器取代:從 Python 入手+演算法$590$502 -
超圖解 Arduino 互動設計入門, 3/e$680$578 -
大數據起步從 Python 開始:算法及設計基礎$490$417 -
$768CISSP 官方學習指南, 7/e (CISSP (ISC)2 Certified Information Systems Security Professional Official Study Guide) -
Effective SQL 中文版 | 寫出良好 SQL 的 61個具體做法 (Effective SQL : 61 Specific Ways to Write Better SQL)$450$356 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Python 初學特訓班 (增訂版) (附250分鐘影音教學/範例程式)$480$379 -
$294Tableau 數據可視化從入門到精通 -
Docker 入門與實戰, 2/e$500$395 -
實戰 Google 深度學習技術:使用 TensorFlow$520$411 -
第一次用 Docker 就上手$420$357 -
資安風險評估指南 (Network Security Assessment, 3/e)$780$663 -
鳳凰專案|看 IT部門如何讓公司從谷底翻身的傳奇故事$480$379 -
Python 也可以這樣學$580$452 -
精通機器學習|使用 Python (Introduction to Machine Learning with Python: A Guide for Data Scientists)$680$537 -
Tensorflow:你也能成為機器學習專家$680$578 -
Docker 這樣學才有趣:從入門,到玩直播、挖礦$450$356
商品描述
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.
The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.
An entire chapter is devoted to the non-parametric methods most widely used in industry.
High resolution methods are detailed in a further four chapters: spectral analysis by stationary time series modeling, minimum variance, and subspace-based estimators.
Finally, advanced concepts are the core of the last four chapters: spectral analysis of non-stationary random signals, space time adaptive processing: irregularly sampled data processing, particle filtering and tracking of varying sinusoids.
Suitable for students, engineers working in industry, and academics at any level, this book provides a rare complete overview of the spectral analysis domain.
The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.
An entire chapter is devoted to the non-parametric methods most widely used in industry.
High resolution methods are detailed in a further four chapters: spectral analysis by stationary time series modeling, minimum variance, and subspace-based estimators.
Finally, advanced concepts are the core of the last four chapters: spectral analysis of non-stationary random signals, space time adaptive processing: irregularly sampled data processing, particle filtering and tracking of varying sinusoids.
Suitable for students, engineers working in industry, and academics at any level, this book provides a rare complete overview of the spectral analysis domain.
商品描述(中文翻譯)
《數位頻譜分析》提供了一個完整涵蓋頻譜分析領域的單一來源。這本自成一體的著作包含了通常在文獻中分散呈現的進階主題的詳細資訊。
理解頻譜分析所需的理論原則在前四章中進行討論:基本原理、數位信號處理、頻譜分析中的估計以及時間序列模型。
整整一章專門討論在工業界最廣泛使用的非參數方法。
高解析度方法在接下來的四章中詳細介紹:透過穩態時間序列建模的頻譜分析、最小變異以及基於子空間的估計器。
最後,進階概念是最後四章的核心:非穩態隨機信號的頻譜分析、空間時間自適應處理:不規則取樣數據處理、粒子濾波和變化正弦波的追蹤。
本書適合任何程度的學生、在工業界工作的工程師以及學術界人士,提供了頻譜分析領域罕見的完整概述。
