Modern Computer Vision with PyTorch: Explore deep learning concepts and implement over 50 real-world image applications (Paperback)
暫譯: 現代電腦視覺與 PyTorch:探索深度學習概念並實作超過 50 個真實世界影像應用 (平裝本)
Ayyadevara, V. Kishore, Reddy, Yeshwanth
- 出版商: Packt Publishing
- 出版日期: 2020-11-27
- 定價: $2,500
- 售價: 8.5 折 $2,125
- 語言: 英文
- 頁數: 824
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1839213477
- ISBN-13: 9781839213472
-
相關分類:
DeepLearning、Computer Vision
-
相關翻譯:
PyTorch 電腦視覺實戰:目標偵測、影像處理與深度學習 (簡中版)
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
$2,200$2,090 -
$2,050$1,948 -
$1,430$1,359 -
$1,300$1,274 -
$880$695 -
$550$550 -
$648$616 -
$653$614 -
$281修改軟件的藝術 : 構建易維護代碼的 9條最佳實踐 (Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of Your Software)
-
$1,960Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python
-
$2,220$2,109 -
$1,750$1,715 -
$690$545 -
$1,200$948 -
$880$695 -
$780$616 -
$2,450$2,328 -
$1,000$790 -
$4,200$3,990 -
$780$616 -
$968Qiskit Pocket Guide: Quantum Development with Qiskit (Paperback)
-
$1,755Learn Three.js : Program 3D animations and visualizations for the web with JavaScript and WebGL, 4/e (Paperback)
-
$2,679Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2/e (Paperback)
-
$1,900$1,805 -
$520$411
商品描述
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions
Key Features
- Implement solutions to 50 real-world computer vision applications using PyTorch
- Understand the theory and working mechanisms of neural network architectures and their implementation
- Discover best practices using a custom library created especially for this book
Book Description
Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets.
You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud.
By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.
What You Will Learn
- Train a NN from scratch with NumPy and PyTorch
- Implement 2D and 3D multi-object detection and segmentation
- Generate digits and DeepFakes with autoencoders and advanced GANs
- Manipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGAN
- Combine CV with NLP to perform OCR, image captioning, and object detection
- Combine CV with reinforcement learning to build agents that play pong and self-drive a car
- Deploy a deep learning model on the AWS server using FastAPI and Docker
- Implement over 35 NN architectures and common OpenCV utilities
Who this book is for
This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you'll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
商品描述(中文翻譯)
掌握使用 PyTorch 建立影像處理應用的深度學習技術,並透過程式碼筆記和測試問題進行學習
主要特色
- 使用 PyTorch 實作 50 個真實世界的電腦視覺應用解決方案
- 理解神經網路架構的理論及其運作機制與實作
- 發現使用專為本書創建的自訂函式庫的最佳實踐
書籍描述
深度學習是許多近期電腦視覺 (CV) 應用進步的推動力。本書採取實作導向的方法,幫助您使用 PyTorch 1.x 在真實世界的數據集上解決超過 50 個 CV 問題。
您將從使用 NumPy 和 PyTorch 從零開始建立一個神經網路 (NN),並發現調整其超參數的最佳實踐。接著,您將使用卷積神經網路和遷移學習進行影像分類,並理解其運作原理。隨著進度的推進,您將實作多個 2D 和 3D 多物件檢測、分割、人類姿勢估計的使用案例,學習 R-CNN 家族、SSD、YOLO、U-Net 架構及 Detectron2 平台。本書還將指導您進行面部表情交換、生成新面孔及操控面部表情,探索自編碼器和現代生成對抗網路。您將學習如何將 CV 與 NLP 技術(如 LSTM 和 transformer)及強化學習技術(如 Deep Q-learning)結合,實作 OCR、影像標題生成、物件檢測及自駕車代理。最後,您將把您的 NN 模型部署到 AWS Cloud 上。
在本書結束時,您將能夠自信地利用現代 NN 架構解決超過 50 個真實世界的 CV 問題。
您將學到的內容
- 使用 NumPy 和 PyTorch 從零開始訓練一個 NN
- 實作 2D 和 3D 多物件檢測及分割
- 使用自編碼器和進階 GAN 生成數字和 DeepFakes
- 使用 CycleGAN、Pix2PixGAN、StyleGAN2 和 SRGAN 操控影像
- 將 CV 與 NLP 結合以執行 OCR、影像標題生成和物件檢測
- 將 CV 與強化學習結合以建立玩 pong 和自駕車的代理
- 使用 FastAPI 和 Docker 在 AWS 伺服器上部署深度學習模型
- 實作超過 35 種 NN 架構和常見的 OpenCV 工具
本書適合誰
本書適合 PyTorch 初學者和中級機器學習從業者,旨在幫助他們熟悉使用深度學習和 PyTorch 的電腦視覺技術。如果您剛開始接觸神經網路,您會發現本書中附有的 GitHub 筆記中的使用案例非常有用。您只需具備 Python 程式語言和機器學習的基本知識,即可開始閱讀本書。