Mastering Computer Vision with TensorFlow 2.x
暫譯: 精通 TensorFlow 2.x 的電腦視覺
Krishnendu (Krish)
- 出版商: Packt Publishing
- 出版日期: 2020-05-14
- 定價: $1,760
- 售價: 9.0 折 $1,584
- 語言: 英文
- 頁數: 430
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838827064
- ISBN-13: 9781838827069
-
相關分類:
DeepLearning、TensorFlow、Computer Vision
-
相關翻譯:
TensorFlow 2.x 高級電腦視覺 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$990Heterogeneous Computing with OpenCL (Paperback)
-
$850$808 -
$602鳥哥的 Linux 私房菜 : 基礎學習篇, 4/e
-
$2,720$2,584 -
$1,420$1,392 -
$1,990$1,891 -
$750$638 -
$1,650$1,568 -
$680$537 -
$520$406 -
$1,840$1,748 -
$780$616 -
$400$316 -
$550$495
商品描述
Apply neural network architectures to build state-of-the-art computer vision applications using the Python programming language
Key Features
- Gain a fundamental understanding of advanced computer vision and neural network models in use today
- Cover tasks such as low-level vision, image classification, and object detection
- Develop deep learning models on cloud platforms and optimize them using TensorFlow Lite and the OpenVINO toolkit
Book Description
Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks.
What you will learn
- Explore methods of feature extraction and image retrieval and visualize different layers of the neural network model
- Use TensorFlow for various visual search methods for real-world scenarios
- Build neural networks or adjust parameters to optimize the performance of models
- Understand TensorFlow DeepLab to perform semantic segmentation on images and DCGAN for image inpainting
- Evaluate your model and optimize and integrate it into your application to operate at scale
- Get up to speed with techniques for performing manual and automated image annotation
Who this book is for
This book is for computer vision professionals, image processing professionals, machine learning engineers and AI developers who have some knowledge of machine learning and deep learning and want to build expert-level computer vision applications. In addition to familiarity with TensorFlow, Python knowledge will be required to get started with this book.
商品描述(中文翻譯)
**應用神經網絡架構來構建最先進的計算機視覺應用程序,使用 Python 程式語言**
#### 主要特點
- 獲得對當前使用的先進計算機視覺和神經網絡模型的基本理解
- 涵蓋低層次視覺、圖像分類和物體檢測等任務
- 在雲平台上開發深度學習模型,並使用 TensorFlow Lite 和 OpenVINO 工具包進行優化
#### 書籍描述
計算機視覺使機器能夠獲得人類級別的理解,以可視化、處理和分析圖像和視頻。本書專注於使用 TensorFlow 幫助您學習先進的計算機視覺任務,如圖像獲取、處理和分析。您將從計算機視覺和深度學習的關鍵原則開始,建立堅實的基礎,然後涵蓋神經網絡架構,理解它們的運作方式,而不是將其視為黑箱。接下來,您將探索 VGG、ResNet、Inception、R-CNN、SSD、YOLO 和 MobileNet 等架構。隨著進步,您將學會使用轉移學習進行視覺搜索方法。您還將涵蓋先進的計算機視覺概念,如語義分割、使用 GAN 進行圖像修補、物體追蹤、視頻分割和動作識別。稍後,本書將重點介紹如何使用機器學習和深度學習概念來執行邊緣檢測和人臉識別等任務。然後,您將發現如何在您的 PC 和各種雲平台上開發強大的神經網絡模型。最後,您將學會執行模型優化方法,以便在邊緣設備上進行實時推斷。到本書結束時,您將對計算機視覺有堅實的理解,並能夠自信地開發模型以自動化任務。
#### 您將學到什麼
- 探索特徵提取和圖像檢索的方法,並可視化神經網絡模型的不同層
- 使用 TensorFlow 進行各種現實場景的視覺搜索方法
- 構建神經網絡或調整參數以優化模型的性能
- 理解 TensorFlow DeepLab 以對圖像進行語義分割,並使用 DCGAN 進行圖像修補
- 評估您的模型,並優化和整合到您的應用程序中以實現規模運作
- 熟悉手動和自動圖像標註的技術
#### 本書適合誰
本書適合計算機視覺專業人士、圖像處理專業人士、機器學習工程師和 AI 開發者,他們對機器學習和深度學習有一定的了解,並希望構建專家級的計算機視覺應用程序。除了熟悉 TensorFlow,還需要具備 Python 知識以開始本書的學習。
作者簡介
Krishnendu (Krish) is passionate about research on computer vision and solving AI problems to make our life simpler. His core expertise is deep learning - computer vision, IoT, and agile software development. Krish is also a passionate app developer and has a dash cam-based object and lane detection and turn by turn navigation and fitness app in the iOS app store - Nity Map AI Camera & Run timer.
作者簡介(中文翻譯)
Krishnendu (Krish)對於計算機視覺的研究以及解決人工智慧問題以簡化我們的生活充滿熱情。他的核心專長是深度學習 - 計算機視覺、物聯網和敏捷軟體開發。Krish也是一位熱衷的應用程式開發者,他在iOS應用程式商店中有一款基於行車記錄器的物體和車道檢測、逐步導航及健身應用程式 - Nity Map AI Camera & Run timer。
目錄大綱
- Computer Vision and Tensorflow Fundamentals
- Content Recognition using Local Binary Pattern
- Face Recognition and Tracking using Viola Jones Algorithm & OpenCV
- Deep learning on images
- Neural Network Architecture & Models
- Visual Search using Transfer Learning
- Object Detection using YOLO
- Semantic Segmentation and Neural Style Transfer
- Action Recognition using Multitask Deep Learning
- Object Classification and Detection using RCNN
- Deep Learning on Edge Devices with GPU/CPU Optimization
- Cloud Computing Platform for Computer Vision
目錄大綱(中文翻譯)
- Computer Vision and Tensorflow Fundamentals
- Content Recognition using Local Binary Pattern
- Face Recognition and Tracking using Viola Jones Algorithm & OpenCV
- Deep learning on images
- Neural Network Architecture & Models
- Visual Search using Transfer Learning
- Object Detection using YOLO
- Semantic Segmentation and Neural Style Transfer
- Action Recognition using Multitask Deep Learning
- Object Classification and Detection using RCNN
- Deep Learning on Edge Devices with GPU/CPU Optimization
- Cloud Computing Platform for Computer Vision