Mastering Reinforcement Learning with Python: Build next-generation, self-learning models using reinforcement learning techniques and best practices (Paperback)
暫譯: 精通強化學習與Python:使用強化學習技術和最佳實踐構建下一代自學模型(平裝本)
Bilgin, Enes
- 出版商: Packt Publishing
- 出版日期: 2020-12-18
- 售價: $1,700
- 貴賓價: 9.5 折 $1,615
- 語言: 英文
- 頁數: 532
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838644148
- ISBN-13: 9781838644147
-
相關分類:
Python、程式語言、Reinforcement、DeepLearning
-
相關翻譯:
Python 強化學習:演算法、核心技術與產業應用 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$450$405 -
$3,230$3,069 -
$708$673 -
$1,500$1,425 -
$420$210 -
$620$484 -
$1,440$1,368 -
$828$787 -
$673自然語言處理:基於預訓練模型的方法
-
$1,000$850 -
$600$570 -
$600$468 -
$650$514 -
$474$450 -
$880$695
相關主題
商品描述
Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices
Key Features:
- Understand how large-scale state-of-the-art RL algorithms and approaches work
- Apply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and more
- Explore tips and best practices from experts that will enable you to overcome real-world RL challenges
Book Description:
Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL.
Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning.
techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning.
As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls.
By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems.
What You Will Learn:
- Model and solve complex sequential decision-making problems using RL
- Develop a solid understanding of how state-of-the-art RL methods work
- Use Python and TensorFlow to code RL algorithms from scratch
- Parallelize and scale up your RL implementations using Ray's RLlib package
- Get in-depth knowledge of a wide variety of RL topics
- Understand the trade-offs between different RL approaches
- Discover and address the challenges of implementing RL in the real world
Who This Book Is For:
This book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.
商品描述(中文翻譯)
獲得使用 TensorFlow 和 RLlib 創建最先進的強化學習代理的實踐經驗,以解決複雜的現實商業和行業問題,並獲得專家的提示和最佳實踐的幫助。
主要特點:
- 了解大規模最先進的強化學習演算法和方法如何運作
- 應用強化學習解決行銷、機器人技術、供應鏈、金融、網路安全等複雜問題
- 探索專家的提示和最佳實踐,幫助您克服現實世界中的強化學習挑戰
書籍描述:
強化學習(Reinforcement Learning, RL)是人工智慧(Artificial Intelligence, AI)的一個領域,用於創建自我學習的自主代理。這本書建立在堅實的理論基礎上,採取實踐方法,並使用受現實行業問題啟發的範例來教您最先進的強化學習。
從賭徒問題、馬可夫決策過程和動態規劃開始,本書深入回顧了經典的強化學習技術,如蒙地卡羅方法和時間差學習。之後,您將學習深度 Q 學習、策略梯度演算法、演員-評論家方法、基於模型的方法以及多代理強化學習。接著,您將了解一些最成功的強化學習實現背後的關鍵方法,如領域隨機化和好奇心驅動學習。
隨著進展,您將探索許多新穎的演算法,並使用現代 Python 庫(如 TensorFlow 和 Ray 的 RLlib 套件)進行高級實現。您還將了解如何在機器人技術、供應鏈管理、行銷、金融、智慧城市和網路安全等領域實施強化學習,同時評估不同方法之間的權衡並避免常見的陷阱。
到本書結束時,您將掌握如何訓練和部署自己的強化學習代理以解決強化學習問題。
您將學到的內容:
- 使用強化學習建模和解決複雜的序列決策問題
- 深入了解最先進的強化學習方法如何運作
- 使用 Python 和 TensorFlow 從零開始編寫強化學習演算法
- 使用 Ray 的 RLlib 套件平行化和擴展您的強化學習實現
- 獲得各種強化學習主題的深入知識
- 理解不同強化學習方法之間的權衡
- 發現並解決在現實世界中實施強化學習的挑戰
本書適合對象:
本書適合專業的機器學習從業者和研究人員,旨在專注於使用 Python 進行實踐的強化學習,並在現實項目中實施先進的深度強化學習概念。希望提升知識以應對大規模和複雜序列決策問題的強化學習專家也會發現本書有用。需要具備 Python 編程和深度學習的工作知識,以及先前的強化學習經驗。