Applied Deep Learning with Keras
暫譯: 應用深度學習與 Keras

Bhagwat, Ritesh, Abdolahnejad, Mahla, Moocarme, Matthew

買這商品的人也買了...

相關主題

商品描述

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code.

Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model.

By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.

商品描述(中文翻譯)

雖然設計神經網絡是一項受歡迎的技能,但掌握它並不容易。使用 Keras,您可以用最少的代碼應用複雜的機器學習算法。

《使用 Keras 的應用深度學習》從機器學習和 Python 的基本概念開始,逐步深入了解如何應用 Keras 開發高效的深度學習解決方案。為了幫助您理解機器學習和深度學習之間的區別,本書指導您如何首先使用 scikit-learn 建立邏輯回歸模型,然後再使用 Keras。您將通過為各種現實世界場景(如疾病預測和客戶流失)創建預測模型,深入了解 Keras 及其多種模型。您將學習如何評估、優化和改進您的模型,以獲得最大的信息。接下來,您將學習如何使用 Keras Wrapper 和 scikit-learn 進行交叉驗證來評估您的模型。隨後,您將了解如何應用 L1、L2 和 dropout 正則化技術來提高模型的準確性。為了幫助維持準確性,您將掌握包括空準確度、精確度和 AUC-ROC 分數技術在內的調整模型的技術。

在本書結束時,您將具備使用 Keras 構建高層次深度神經網絡所需的技能。

類似商品

最後瀏覽商品 (20)