TinyML Cookbook - Second Edition: Combine machine learning with microcontrollers to solve real-world problems
暫譯: TinyML 食譜 - 第二版:結合機器學習與微控制器解決現實世界的問題

Iodice, Gian Marco

  • 出版商: Packt Publishing
  • 出版日期: 2023-11-29
  • 售價: $1,840
  • 貴賓價: 9.5$1,748
  • 語言: 英文
  • 頁數: 664
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1837637369
  • ISBN-13: 9781837637362
  • 相關分類: 單晶片Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Over 70 recipes to help you develop smart applications on Arduino Nano 33 BLE Sense, Raspberry Pi Pico, and SparkFun RedBoard Artemis Nano using the power of machine learning


Purchase of the print or Kindle book includes a free eBook in PDF format.


Key Features:


  • Train, optimize, and deploy ML models using TensorFlow Lite and Edge Impulse
  • Get to grips with embedded platforms like Arm Mbed OS and Zephyr OS and peripherals like GPIO and I2C
  • Explore cutting-edge technologies, such as on-device training for updating models without data leaving the device


Book Description:


Discover the incredible world of tiny Machine Learning (tinyML) and create smart projects using real-world data sensors with Arduino Nano 33 BLE Sense, Raspberry Pi Pico, and SparkFun RedBoard Artemis Nano.


You'll learn the unique constraints of on-device ML and how to work with embedded platforms like Arm Mbed OS. TinyML Cookbook, Second Edition, will show you how to implement end-to-end smart applications in different scenarios using the three "V" sensors (Voice, Vision, and Vibration). You'll train custom models from weather prediction to real-time speech recognition using TensorFlow Lite and Edge Impulse. Expert tips will help you squeeze ML models into tight memory budgets and accelerate performance using CMSIS-DSP. Finally, you'll learn advanced techniques like on-device learning, deploying scikit-learn models, and power optimization.


This edition includes new recipes featuring an LSTM neural network to recognize music genres and the Faster-Objects-More-Objects (FOMO) algorithm for detecting objects in a scene. These will help you stay up to date with the latest developments in the tinyML community.


Finally, take your tinyML solutions to the next level with microTVM, microNPU, and on-device learning. This book will give you the knowledge to make the most of your microcontroller and create unique projects with tinyML!


What You Will Learn:


  • Understand the microcontroller programming fundamentals
  • Work with real-world sensors, such as the microphone, camera, and accelerometer
  • Run on-device ML with TensorFlow Lite for Microcontrollers
  • Implement an app that responds to human voice with Edge Impulse
  • Leverage transfer learning with FOMO and Keras
  • Squeeze ML models into tight memory with quantization and other optimization methods
  • Create gesture-recognition and music genre classifier apps with the Raspberry Pi Pico
  • Design a CIFAR-10 model for memory-constrained microcontrollers


Who this book is for:


This book is ideal for machine learning engineers or data scientists looking to build embedded/edge ML applications and IoT developers who want to add machine learning capabilities to their devices. If you're an engineer, student, or hobbyist interested in exploring tinyML, then this book is your perfect companion.


Basic familiarity with C/C++ and Python programming is a prerequisite; however, no prior knowledge of microcontrollers is necessary to get started with this book.

商品描述(中文翻譯)

超過 70 種食譜,幫助您在 Arduino Nano 33 BLE Sense、Raspberry Pi Pico 和 SparkFun RedBoard Artemis Nano 上開發智能應用,利用機器學習的力量

購買印刷版或 Kindle 書籍包括免費的 PDF 格式電子書。

主要特點:


  • 使用 TensorFlow Lite 和 Edge Impulse 訓練、優化和部署機器學習模型

  • 熟悉嵌入式平台,如 Arm Mbed OS 和 Zephyr OS,以及 GPIO 和 I2C 等外圍設備

  • 探索尖端技術,例如在設備上訓練,以便在不將數據離開設備的情況下更新模型

書籍描述:

發現微型機器學習(tinyML)的驚人世界,並使用 Arduino Nano 33 BLE Sense、Raspberry Pi Pico 和 SparkFun RedBoard Artemis Nano 創建智能項目,利用現實世界的數據傳感器。

您將學習設備上機器學習的獨特限制,以及如何使用 Arm Mbed OS 等嵌入式平台。第二版的《TinyML Cookbook》將向您展示如何在不同場景中使用三種「V」傳感器(聲音、視覺和振動)實現端到端的智能應用。您將使用 TensorFlow Lite 和 Edge Impulse 訓練從天氣預測到實時語音識別的自定義模型。專家的提示將幫助您將機器學習模型壓縮到緊湊的內存預算中,並使用 CMSIS-DSP 加速性能。最後,您將學習先進技術,如設備上學習、部署 scikit-learn 模型和功耗優化。

本版包括新的食譜,介紹 LSTM 神經網絡以識別音樂類型,以及用於檢測場景中物體的 Faster-Objects-More-Objects(FOMO)算法。這些將幫助您跟上 tinyML 社區的最新發展。

最後,利用 microTVM、microNPU 和設備上學習將您的 tinyML 解決方案提升到新水平。本書將為您提供充分利用微控制器的知識,並創建獨特的 tinyML 項目!

您將學到的內容:


  • 理解微控制器編程的基本原理

  • 使用現實世界的傳感器,如麥克風、相機和加速度計

  • 在微控制器上運行 TensorFlow Lite 的設備上機器學習

  • 實現一個能夠響應人聲的應用,使用 Edge Impulse

  • 利用 FOMO 和 Keras 進行遷移學習

  • 使用量化和其他優化方法將機器學習模型壓縮到緊湊的內存中

  • 使用 Raspberry Pi Pico 創建手勢識別和音樂類型分類應用

  • 為內存受限的微控制器設計 CIFAR-10 模型

本書適合誰:

本書非常適合希望構建嵌入式/邊緣機器學習應用的機器學習工程師或數據科學家,以及希望為其設備添加機器學習功能的物聯網開發者。如果您是對探索 tinyML 感興趣的工程師、學生或愛好者,那麼這本書將是您的完美伴侶。

對 C/C++ 和 Python 編程有基本的熟悉程度是前提;然而,開始閱讀本書不需要先前的微控制器知識。

最後瀏覽商品 (20)