Principles of Data Science - Third Edition: A beginner's guide to essential math and coding skills for data fluency and machine learning
暫譯: 數據科學原則(第三版):初學者的數學與程式設計技能指南,助你掌握數據流暢性與機器學習
Ozdemir, Sinan
- 出版商: Packt Publishing
- 出版日期: 2024-01-31
- 售價: $1,680
- 貴賓價: 9.5 折 $1,596
- 語言: 英文
- 頁數: 326
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1837636303
- ISBN-13: 9781837636303
-
相關分類:
Machine Learning、Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
相關主題
商品描述
Transform your data into insights with must-know techniques and mathematical concepts to unravel the secrets hidden within your data
Key Features:
- Learn practical data science combined with data theory to gain maximum insights from data
- Discover methods for deploying actionable machine learning pipelines while mitigating biases in data and models
- Explore actionable case studies to put your new skills to use immediately
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
Principles of Data Science bridges mathematics, programming, and business analysis, empowering you to confidently pose and address complex data questions and construct effective machine learning pipelines. This book will equip you with the tools to transform abstract concepts and raw statistics into actionable insights.
Starting with cleaning and preparation, you'll explore effective data mining strategies and techniques before moving on to building a holistic picture of how every piece of the data science puzzle fits together. Throughout the book, you'll discover statistical models with which you can control and navigate even the densest or the sparsest of datasets and learn how to create powerful visualizations that communicate the stories hidden in your data.
With a focus on application, this edition covers advanced transfer learning and pre-trained models for NLP and vision tasks. You'll get to grips with advanced techniques for mitigating algorithmic bias in data as well as models and addressing model and data drift. Finally, you'll explore medium-level data governance, including data provenance, privacy, and deletion request handling.
By the end of this data science book, you'll have learned the fundamentals of computational mathematics and statistics, all while navigating the intricacies of modern ML and large pre-trained models like GPT and BERT.
What You Will Learn:
- Master the fundamentals steps of data science through practical examples
- Bridge the gap between math and programming using advanced statistics and ML
- Harness probability, calculus, and models for effective data control
- Explore transformative modern ML with large language models
- Evaluate ML success with impactful metrics and MLOps
- Create compelling visuals that convey actionable insights
- Quantify and mitigate biases in data and ML models
Who this book is for:
If you are an aspiring novice data scientist eager to expand your knowledge, this book is for you. Whether you have basic math skills and want to apply them in the field of data science, or you excel in programming but lack the necessary mathematical foundations, you'll find this book useful. Familiarity with Python programming will further enhance your learning experience.
商品描述(中文翻譯)
將您的數據轉化為洞察,掌握必知的技術和數學概念,揭開數據中隱藏的秘密
主要特點:
- 學習實用的數據科學,結合數據理論,從數據中獲取最大洞察
- 探索可行的機器學習管道部署方法,同時減少數據和模型中的偏見
- 探索可行的案例研究,立即運用您的新技能
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述:
《數據科學原理》橋接數學、程式設計和商業分析,使您能夠自信地提出和解決複雜的數據問題,並構建有效的機器學習管道。本書將為您提供將抽象概念和原始統計數據轉化為可行洞察的工具。
從數據清理和準備開始,您將探索有效的數據挖掘策略和技術,然後進一步建立數據科學拼圖中每個部分如何相互配合的整體圖景。在整本書中,您將發現統計模型,這些模型使您能夠控制和導航即使是最密集或最稀疏的數據集,並學習如何創建強大的可視化,傳達數據中隱藏的故事。
本版專注於應用,涵蓋了用於自然語言處理(NLP)和視覺任務的先進轉移學習和預訓練模型。您將掌握減少數據和模型中的算法偏見的先進技術,並解決模型和數據漂移的問題。最後,您將探索中等級別的數據治理,包括數據來源、隱私和刪除請求處理。
在這本數據科學書籍結束時,您將學會計算數學和統計的基本原理,同時駕馭現代機器學習和大型預訓練模型(如 GPT 和 BERT)的複雜性。
您將學到什麼:
- 通過實用範例掌握數據科學的基本步驟
- 使用先進的統計和機器學習彌合數學和程式設計之間的鴻溝
- 利用概率、微積分和模型進行有效的數據控制
- 探索大型語言模型的變革性現代機器學習
- 使用有影響力的指標和 MLOps 評估機器學習的成功
- 創建引人注目的視覺效果,傳達可行的洞察
- 量化和減少數據和機器學習模型中的偏見
本書適合誰:
如果您是一位渴望擴展知識的初學者數據科學家,這本書適合您。無論您是否具備基本的數學技能並希望將其應用於數據科學領域,或是您在程式設計方面表現出色但缺乏必要的數學基礎,您都會發現這本書對您有幫助。熟悉 Python 程式設計將進一步增強您的學習體驗。