The Regularization Cookbook: Explore practical recipes to improve the functionality of your ML models
暫譯: 正則化食譜:探索實用配方以提升您的機器學習模型功能
Vandenbussche, Vincent
- 出版商: Packt Publishing
- 出版日期: 2023-07-31
- 售價: $2,170
- 貴賓價: 9.5 折 $2,062
- 語言: 英文
- 頁數: 424
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1837634084
- ISBN-13: 9781837634088
-
相關分類:
人工智慧、Machine Learning、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,800$2,660 -
$2,720$2,584 -
$834$792 -
$1,421Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies, 2/e (Hardcover)
-
$1,980$1,881
商品描述
Methodologies and recipes to regularize nearly any machine learning and deep learning model using cutting-edge technologies such as Stable Diffusion, Dall-E and GPT-3.
Key Features
- Learn how to diagnose whether regularization is needed for any machine learning model
- Regularize different types of ML models using a broad range of techniques and methods
- Get the best of your models using state of the art Computer Vision and NLP
Book Description
Deploying machine learning solutions is all about getting robust results on new, unseen data. To achieve such results, one way is regularization. Regularization can take many forms and can be used in many ways, and not all methods apply to all cases. This book aims at providing the right tools and methods to handle any case properly, with ready-to-use working codes as well as theoretical explanations whenever possible.
After an introduction to regularization and methods to diagnose when to use it, we will start implementing regularization techniques on linear models such as linear and logistic regression, and tree-based models such as random forest and gradient boosting.
The book will then introduce specific regularization methods based on data. High cardinality features and imbalanced datasets may require specific regularization methods that will be explored.
In the last five chapters, the book will cover regularization for deep learning models. After reviewing general methods that apply to any type of neural network, the book will dive into more NLP-specific methods for RNNs and transformers, as well as using BERT or GPT-3. We will close with regularization for Computer Vision, covering CNN specifics, as well as the use of generative models such as Stable Diffusion and Dall-E.
What you will learn
- How to diagnose overfitting properly and when regularization is needed
- Regularizing common linear models such as logistic regression
- Get a deeper knowledge of regularizing tree-based models such as XGBoost
- Leverage structured data to regularize ML models
- Learn general techniques to regularize deep learning models
- Discover specific regularization techniques for NLP problems using Transformers
- Understand the regularization in Computer Vision models and CNN architectures
- Apply cutting-edge computer vision regularization with generative models
Who This Book Is For
Whether you are a data scientist, a machine learning engineer, or just a machine learning enthusiast, if you want to get hands-on knowledge of the available methods to improve the performances of your models, this book is for you.
Basic, hands-on knowledge of Python is expected to get the most out of the proposed codes. Also, basic concepts of ML and DL are reminded to smooth the learning curve, no matter their level. This book is also aimed at experienced professionals willing to use state-of-the-art methods for regularization.
商品描述(中文翻譯)
方法論和配方,用於使用尖端技術如 Stable Diffusion、Dall-E 和 GPT-3 來正則化幾乎任何機器學習和深度學習模型。
主要特點
- 學習如何診斷任何機器學習模型是否需要正則化
- 使用廣泛的技術和方法來正則化不同類型的機器學習模型
- 利用最先進的計算機視覺和自然語言處理來獲得模型的最佳表現
書籍描述
部署機器學習解決方案的關鍵在於在新的、未見過的數據上獲得穩健的結果。為了實現這樣的結果,一種方法是正則化。正則化可以有多種形式,並且可以以多種方式使用,並非所有方法都適用於所有情況。本書旨在提供正確的工具和方法,以妥善處理任何情況,並在可能的情況下提供可即用的工作代碼和理論解釋。
在介紹正則化及其診斷方法後,我們將開始在線性模型(如線性回歸和邏輯回歸)以及基於樹的模型(如隨機森林和梯度提升)上實施正則化技術。
然後,本書將介紹基於數據的特定正則化方法。高基數特徵和不平衡數據集可能需要特定的正則化方法,這些方法將被探討。
在最後五章中,本書將涵蓋深度學習模型的正則化。在回顧適用於任何類型神經網絡的一般方法後,本書將深入探討針對 RNN 和變壓器的更具自然語言處理特定的方法,以及使用 BERT 或 GPT-3。我們將以計算機視覺的正則化作結,涵蓋 CNN 的特點,以及使用生成模型如 Stable Diffusion 和 Dall-E。
你將學到的內容
- 如何正確診斷過擬合以及何時需要正則化
- 正則化常見的線性模型,如邏輯回歸
- 更深入了解正則化基於樹的模型,如 XGBoost
- 利用結構化數據來正則化機器學習模型
- 學習正則化深度學習模型的一般技術
- 發現針對自然語言處理問題使用變壓器的特定正則化技術
- 理解計算機視覺模型和 CNN 架構中的正則化
- 應用尖端計算機視覺正則化與生成模型
本書適合誰
無論你是數據科學家、機器學習工程師,還是僅僅是機器學習愛好者,如果你想獲得有關可用方法的實踐知識,以改善模型的性能,本書適合你。
預期具備基本的 Python 實踐知識,以充分利用所提議的代碼。此外,為了平滑學習曲線,無論其水平如何,基本的機器學習和深度學習概念也會被提醒。本書同樣適合希望使用最先進的正則化方法的經驗豐富的專業人士。
目錄大綱
- An Overview of Regularization
- Machine Learning Refresher
- Regularization with Linear Models
- Regularization with Tree-based Models
- Regularization with Data
- Deep Learning Reminders
- Deep Learning Regularization
- Regularization with Recurrent Neural Networks
- Advanced Regularization in Natural Language Processing
- Regularization in Computer Vision
- Regularization in Computer Vision - synthetic image generation
目錄大綱(中文翻譯)
- An Overview of Regularization
- Machine Learning Refresher
- Regularization with Linear Models
- Regularization with Tree-based Models
- Regularization with Data
- Deep Learning Reminders
- Deep Learning Regularization
- Regularization with Recurrent Neural Networks
- Advanced Regularization in Natural Language Processing
- Regularization in Computer Vision
- Regularization in Computer Vision - synthetic image generation