Building LLM Powered Applications: Create intelligent apps and agents with large language models
暫譯: 構建 LLM 驅動的應用程式:使用大型語言模型創建智能應用和代理
Alto, Valentina
- 出版商: Packt Publishing
- 出版日期: 2024-05-22
- 售價: $1,900
- 貴賓價: 9.5 折 $1,805
- 語言: 英文
- 頁數: 342
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1835462316
- ISBN-13: 9781835462317
-
相關分類:
LangChain
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,800$2,660 -
$2,700$2,565 -
$834$792 -
$1,421Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies, 2/e (Hardcover)
-
$534$507 -
$654$621 -
$894$849 -
$3,510$3,335 -
$708$673 -
$774$735 -
$509數以達理:量化研發管理指南
-
$1,957Quantitative Portfolio Management: The Art and Science of Statistical Arbitrage
-
$1,980$1,881 -
$469LangChain 入門指南:構建高可復用、可擴展的 LLM 應用程序
-
$2,024Automating Data Quality Monitoring: Scaling Beyond Rules with Machine Learning (Paperback)
-
$1,840$1,748 -
$301基於近鄰思想和同步模型的聚類算法
-
$2,300$2,185 -
$3,060$2,907 -
$3,600$3,420 -
$3,510$3,335 -
$3,510$3,335 -
$2,124Defensive Security Handbook: Best Practices for Securing Infrastructure (Paperback)
-
$654$621
相關主題
商品描述
Get hands-on with GPT 3.5, GPT 4, LangChain, Llama 2, Falcon LLM and more, to build LLM-powered sophisticated AI applications
Key Features
- Embed LLMs into real-world applications
- Use LangChain to orchestrate LLMs and their components within applications
- Grasp basic and advanced techniques of prompt engineering
Book Description
Building LLM Apps delves into the fundamental concepts, cutting-edge technologies, and practical applications that LLMs offer. Ultimately paving the way for the emergence of Large Foundation Models (LFMs) that extend the boundaries of AI capabilities.
The book begins with an in-depth introduction to LLMs. We then explore various mainstream architectural frameworks, including both proprietary models (GPT 3.5/4) and open-source models (Falcon LLM), and analyze their unique strengths and differences. Moving ahead, with a focus on the Python-based, lightweight framework called LangChain. We guide readers through the process of creating intelligent agents capable of retrieving information from unstructured data and engaging with structured data using LLMs and powerful toolkits. Furthermore, the book ventures into the realm of LFMs, which transcend language modeling to encompass various AI tasks and modalities, such as vision and audio.
Whether you are a seasoned AI expert or a newcomer to the field, this book is your roadmap to unlock the full potential of LLMs and forge a new era of intelligent machines.
What you will learn
- Core components of LLMs' architecture, including encoder-decoders blocks, embedding and so on
- Get well-versed with unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM
- Use AI orchestrators like LangChain, and Streamlit as frontend
- Get familiar with LLMs components such as memory, prompts and tools
- Learn non-parametric knowledge, embeddings and vector databases
- Understand the implications of LFMs for AI research, and industry applications
- Customize your LLMs with fine tuning
- Learn the ethical implications of LLM-powered applications
Who this book is for
Software engineers and data scientists who want hands-on guidance for applying LLMs to build applications. The book will also appeal to technical leaders, students, and researchers interested in applied LLM topics.
We don't assume previous experience with LLM specifically. But readers should have core ML/software engineering fundamentals to understand and apply the content.
商品描述(中文翻譯)
**親手操作 GPT 3.5、GPT 4、LangChain、Llama 2、Falcon LLM 等,構建基於 LLM 的複雜 AI 應用程式**
**主要特點**
1. 將 LLM 嵌入到現實世界的應用程式中
2. 使用 LangChain 在應用程式中協調 LLM 及其組件
3. 掌握提示工程的基本和進階技術
**書籍描述**
《構建 LLM 應用程式》深入探討 LLM 所提供的基本概念、尖端技術和實際應用,最終為大型基礎模型(Large Foundation Models, LFMs)的出現鋪平道路,擴展 AI 能力的邊界。
本書首先對 LLM 進行深入介紹。接著,我們探索各種主流架構框架,包括專有模型(GPT 3.5/4)和開源模型(Falcon LLM),並分析它們的獨特優勢和差異。隨後,我們專注於基於 Python 的輕量級框架 LangChain,指導讀者創建能夠從非結構化數據中檢索信息並使用 LLM 和強大工具包與結構化數據互動的智能代理。此外,本書還進入 LFMs 的領域,這些模型超越了語言建模,涵蓋各種 AI 任務和模態,如視覺和音頻。
無論您是資深的 AI 專家還是該領域的新手,本書都是您解鎖 LLM 全部潛力並開創智能機器新時代的路線圖。
**您將學到的內容**
1. LLM 架構的核心組件,包括編碼器-解碼器區塊、嵌入等
2. 熟悉 LLM 的獨特特性,如 GPT-3.5/4、Llama 2 和 Falcon LLM
3. 使用 AI 協調器如 LangChain,並使用 Streamlit 作為前端
4. 熟悉 LLM 的組件,如記憶體、提示和工具
5. 學習非參數知識、嵌入和向量數據庫
6. 理解 LFMs 對 AI 研究和行業應用的影響
7. 通過微調自定義您的 LLM
8. 學習 LLM 驅動應用程式的倫理影響
**本書適合誰**
本書適合希望獲得實踐指導以應用 LLM 構建應用程式的軟體工程師和數據科學家。本書也將吸引對應用 LLM 主題感興趣的技術領導者、學生和研究人員。
我們不假設讀者對 LLM 有先前的經驗,但讀者應具備核心的機器學習/軟體工程基礎,以理解和應用內容。