MATLAB for Machine Learning - Second Edition: Unlock the power of deep learning for swift and enhanced results
暫譯: MATLAB 機器學習(第二版):解鎖深度學習的力量以快速提升成果
Ciaburro, Giuseppe
- 出版商: Packt Publishing
- 出版日期: 2024-01-30
- 售價: $1,950
- 貴賓價: 9.5 折 $1,853
- 語言: 英文
- 頁數: 374
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1835087698
- ISBN-13: 9781835087695
-
相關分類:
Matlab、Apple Developer、Machine Learning、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
相關主題
商品描述
Master MATLAB tools for creating machine learning applications through effective code writing, guided by practical examples showcasing the versatility of machine learning in real-world applications
Key Features:
- Work with the MATLAB Machine Learning Toolbox to implement a variety of machine learning algorithms
- Evaluate, deploy, and operationalize your custom models, incorporating bias detection and pipeline monitoring
- Uncover effective approaches to deep learning for computer vision, time series analysis, and forecasting
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
Discover why the MATLAB programming environment is highly favored by researchers and math experts for machine learning with this guide which is designed to enhance your proficiency in both machine learning and deep learning using MATLAB, paving the way for advanced applications.
By navigating the versatile machine learning tools in the MATLAB environment, you'll learn how to seamlessly interact with the workspace. You'll then move on to data cleansing, data mining, and analyzing various types of data in machine learning, and visualize data values on a graph. As you progress, you'll explore various classification and regression techniques, skillfully applying them with MATLAB functions.
This book teaches you the essentials of neural networks, guiding you through data fitting, pattern recognition, and cluster analysis. You'll also explore feature selection and extraction techniques for performance improvement through dimensionality reduction. Finally, you'll leverage MATLAB tools for deep learning and managing convolutional neural networks.
By the end of the book, you'll be able to put it all together by applying major machine learning algorithms in real-world scenarios.
What You Will Learn:
- Discover different ways to transform data into valuable insights
- Explore the different types of regression techniques
- Grasp the basics of classification through Naive Bayes and decision trees
- Use clustering to group data based on similarity measures
- Perform data fitting, pattern recognition, and cluster analysis
- Implement feature selection and extraction for dimensionality reduction
- Harness MATLAB tools for deep learning exploration
Who this book is for:
This book is for ML engineers, data scientists, DL engineers, and CV/NLP engineers who want to use MATLAB for machine learning and deep learning. A fundamental understanding of programming concepts is necessary to get started.
商品描述(中文翻譯)
掌握 MATLAB 工具以透過有效的程式碼撰寫創建機器學習應用,並通過實際範例展示機器學習在現實應用中的多樣性
主要特點:
- 使用 MATLAB 機器學習工具箱實現各種機器學習演算法
- 評估、部署和運營您的自訂模型,並納入偏差檢測和管道監控
- 揭示深度學習在計算機視覺、時間序列分析和預測中的有效方法
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述:
了解為什麼 MATLAB 編程環境受到研究人員和數學專家的高度青睞,特別是在機器學習方面。本指南旨在提升您在使用 MATLAB 進行機器學習和深度學習的熟練度,為高級應用鋪平道路。
通過導航 MATLAB 環境中的多功能機器學習工具,您將學會如何無縫地與工作區互動。接著,您將進行數據清理、數據挖掘,並分析機器學習中的各類數據,並在圖表上可視化數據值。隨著進展,您將探索各種分類和回歸技術,並熟練地應用 MATLAB 函數。
本書教您神經網絡的基本知識,指導您進行數據擬合、模式識別和聚類分析。您還將探索特徵選擇和提取技術,以通過降維來提高性能。最後,您將利用 MATLAB 工具進行深度學習和管理卷積神經網絡。
在書籍結束時,您將能夠將所有知識整合,並在現實場景中應用主要的機器學習演算法。
您將學到的內容:
- 發現將數據轉化為有價值見解的不同方法
- 探索不同類型的回歸技術
- 掌握通過 Naive Bayes 和決策樹進行分類的基本知識
- 使用聚類根據相似性度量對數據進行分組
- 執行數據擬合、模式識別和聚類分析
- 實施特徵選擇和提取以進行降維
- 利用 MATLAB 工具進行深度學習探索
本書適合誰:
本書適合希望使用 MATLAB 進行機器學習和深度學習的 ML 工程師、數據科學家、DL 工程師以及計算機視覺/NLP 工程師。開始之前需要對編程概念有基本的理解。