Transformers for Natural Language Processing and Computer Vision, 3/e (Paperback)
暫譯: 自然語言處理與計算機視覺的變壓器,第三版(平裝本)

Rothman, Denis

  • 出版商: Packt Publishing
  • 出版日期: 2024-02-29
  • 售價: $2,200
  • 貴賓價: 9.5$2,090
  • 語言: 英文
  • 頁數: 728
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1805128728
  • ISBN-13: 9781805128724
  • 相關分類: 人工智慧Computer Vision
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Unleash the full potential of transformers with this comprehensive guide covering architecture, capabilities, risks, and practical implementations on OpenAI, Google Vertex AI, and Hugging Face

 

Key Features:

  • Master NLP and vision transformers, from the architecture to fine-tuning and implementation
  • Learn how to apply Retrieval Augmented Generation (RAG) with LLMs using customized texts and embeddings
  • Mitigate LLM risks, such as hallucinations, using moderation models and knowledge bases

 

Book Description:

Transformers for Natural Language Processing and Computer Vision, Third Edition, explores Large Language Models' (LLMs) architectures, applications, and various platforms (Hugging Face, OpenAI, and Google Vertex AI) used for Natural Language Processing (NLP) and Computer Vision (CV).

 

The book guides you through different transformer architectures to the latest Foundation Models and Generative AI. You'll pretrain and fine-tune LLMs and work through different use cases, from summarization to implementing question-answering systems with embedding-based search techniques. This book explains the risks of LLMs, from hallucinations and memorization to privacy, and how to mitigate risks using moderation models with rule and knowledge bases. You'll implement Retrieval Augmented Generation (RAG) with LLMs to improve the accuracy of your models and give you greater control over LLM outputs.

 

Dive into generative vision transformers and multimodal model architectures and build applications, such as image and video-to-text classifiers. Go further by combining different models and platforms and learning about AI agent replication.

 

This book provides you with an understanding of transformer architectures, pretraining, fine-tuning, LLM use cases, and best practices.

 

What You Will Learn:

  • Learn how to pretrain and fine-tune LLMs
  • Learn how to work with multiple platforms, such as Hugging Face, OpenAI, and Google Vertex AI
  • Learn about different tokenizers and the best practices for preprocessing language data
  • Implement Retrieval Augmented Generation and rules bases to mitigate hallucinations
  • Visualize transformer model activity for deeper insights using BertViz, LIME, and SHAP
  • Create and implement cross-platform chained models, such as HuggingGPT
  • Go in-depth into vision transformers with CLIP, DALL-E 2, DALL-E 3, and GPT-4V

 

Who this book is for:

This book is ideal for NLP and CV engineers, software developers, data scientists, machine learning engineers, and technical leaders looking to advance their LLMs and generative AI skills or explore the latest trends in the field.

 

Knowledge of Python and machine learning concepts is required to fully understand the use cases and code examples. However, with examples using LLM user interfaces, prompt engineering, and no-code model building, this book is great for anyone curious about the AI revolution.

商品描述(中文翻譯)

釋放變壓器的全部潛力,這本全面指南涵蓋架構、能力、風險以及在 OpenAI、Google Vertex AI 和 Hugging Face 上的實際應用

主要特點:


  • 掌握自然語言處理 (NLP) 和視覺變壓器,從架構到微調和實施

  • 學習如何使用自定義文本和嵌入來應用檢索增強生成 (RAG) 與大型語言模型 (LLMs)

  • 使用審核模型和知識庫來減輕 LLM 風險,例如幻覺

書籍描述:

《自然語言處理與計算機視覺的變壓器,第三版》探討大型語言模型 (LLMs) 的架構、應用以及用於自然語言處理 (NLP) 和計算機視覺 (CV) 的各種平台(Hugging Face、OpenAI 和 Google Vertex AI)。

本書引導您了解不同的變壓器架構,直到最新的基礎模型和生成式 AI。您將預訓練和微調 LLM,並處理不同的使用案例,從摘要到實施基於嵌入的問答系統。本書解釋了 LLM 的風險,從幻覺和記憶到隱私,以及如何使用帶有規則和知識庫的審核模型來減輕風險。您將實施檢索增強生成 (RAG) 與 LLM,以提高模型的準確性並對 LLM 輸出進行更大的控制。

深入了解生成式視覺變壓器和多模態模型架構,並構建應用程序,例如圖像和視頻到文本的分類器。進一步結合不同的模型和平台,並學習 AI 代理的複製。

本書使您了解變壓器架構、預訓練、微調、LLM 使用案例和最佳實踐。

您將學到什麼:


  • 學習如何預訓練和微調 LLM

  • 學習如何使用多個平台,例如 Hugging Face、OpenAI 和 Google Vertex AI

  • 了解不同的分詞器及其在語言數據預處理中的最佳實踐

  • 實施檢索增強生成和規則庫以減輕幻覺

  • 使用 BertViz、LIME 和 SHAP 可視化變壓器模型活動以獲得更深入的見解

  • 創建和實施跨平台鏈接模型,例如 HuggingGPT

  • 深入了解視覺變壓器,包括 CLIP、DALL-E 2、DALL-E 3 和 GPT-4V

本書適合誰:

本書非常適合自然語言處理 (NLP) 和計算機視覺 (CV) 工程師、軟體開發人員、數據科學家、機器學習工程師以及希望提升其 LLM 和生成式 AI 技能或探索該領域最新趨勢的技術領導者。

需要具備 Python 和機器學習概念的知識,以充分理解使用案例和代碼示例。然而,通過使用 LLM 用戶界面、提示工程和無代碼模型構建的示例,本書對於任何對 AI 革命感到好奇的人來說都是很好的選擇。