Mastering PyTorch : Create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond, 2/e (Paperback)
暫譯: 精通 PyTorch:從 CNN 到多模態模型、LLM 及更多,創建與部署深度學習模型,第二版(平裝本)
Jha, Ashish Ranjan
- 出版商: Packt Publishing
- 出版日期: 2024-05-31
- 售價: $2,100
- 貴賓價: 9.5 折 $1,995
- 語言: 英文
- 頁數: 558
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801074305
- ISBN-13: 9781801074308
-
相關分類:
LangChain、DeepLearning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$780$702 -
$480$379 -
$390$371 -
$880$695 -
$780$616 -
$2,250$2,138 -
$3,390$3,221 -
$2,280$2,166 -
$1,832Data Visualization with Python and JavaScript: Scrape, Clean, Explore, and Transform Your Data, 2/e
-
$594$564 -
$380$300 -
$311你好,ChatGPT AI ChatGPT GPT-3 GPT-4
-
$2,502Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2/e (Paperback)
-
$305知識圖譜:方法、工具與案例
-
$1,480$1,450 -
$454從零開始大模型開發與微調:基於 PyTorch 與 ChatGLM
-
$880$695 -
$720$569 -
$331LangChain 編程:從入門到實踐
-
$594$564 -
$654$621 -
$834$792 -
$403PyTorch 深度學習與電腦視覺實踐
-
$690$518 -
$680$530
相關主題
商品描述
Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples
Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks
Purchase of the print or Kindle book includes a free eBook in PDF format
Key Features:
- Understand how to use PyTorch to build advanced neural network models
- Get the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and Docker
- Unlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworks
Book Description:
PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most from your data and build complex neural network models.
You'll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You'll deploy PyTorch models to production, including mobile devices. Finally, you'll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai for prototyping models to training models using PyTorch Lightning. You'll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face.
By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
What You Will Learn:
- Implement text, vision, and music generating models using PyTorch
- Build a deep Q-network (DQN) model in PyTorch
- Deploy PyTorch models on mobile devices (Android and iOS)
- Become well-versed with rapid prototyping using PyTorch with fast.ai
- Perform neural architecture search effectively using AutoML
- Easily interpret machine learning models using Captum
- Design ResNets, LSTMs, and graph neural networks (GNNs)
- Create language and vision transformer models using Hugging Face
Who this book is for:
This deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required.
商品描述(中文翻譯)
**掌握使用 PyTorch 的機器學習進階技術和演算法,並透過實際案例進行學習**
**更新至 PyTorch 2.x,包括與 Hugging Face 的整合、行動部署、擴散模型和圖神經網路**
**購買印刷版或 Kindle 書籍可獲得免費 PDF 格式電子書**
**主要特色:**
- 了解如何使用 PyTorch 建立進階神經網路模型
- 通過與 Hugging Face、fastai、PyTorch Lightning、PyTorch Geometric、Flask 和 Docker 的合作,充分發揮 PyTorch 的潛力
- 解鎖多 GPU 的快速訓練,並使用高效的推理框架優化模型部署
**書籍描述:**
PyTorch 使任何人建立深度學習應用程式變得比以往更容易。本書將幫助您揭示專家技術,充分利用您的數據並建立複雜的神經網路模型。
您將建立用於圖像分類的卷積神經網路,以及用於情感分析的遞迴神經網路和變壓器。隨著進步,您將在不同領域應用深度學習,例如音樂、文本和圖像生成,使用生成模型,包括擴散模型。您不僅會在 PyTorch 中建立和訓練自己的深度強化學習模型,還會學習如何使用多個 CPU、GPU 和混合精度訓練來優化模型訓練。您將把 PyTorch 模型部署到生產環境,包括行動設備。最後,您將探索 PyTorch 生態系統及其豐富的庫,這些庫將為您的深度學習工具箱增添另一組工具,教您如何使用 fastai 進行模型原型設計,並使用 PyTorch Lightning 進行模型訓練。您將發現 AutoML 和可解釋 AI (XAI) 的庫,創建推薦系統,並使用 Hugging Face 建立語言和視覺變壓器。
在本書結束時,您將能夠使用 PyTorch 執行複雜的深度學習任務,建立智能人工智慧模型。
**您將學到的內容:**
- 使用 PyTorch 實現文本、視覺和音樂生成模型
- 在 PyTorch 中建立深度 Q 網路 (DQN) 模型
- 在行動設備 (Android 和 iOS) 上部署 PyTorch 模型
- 熟練掌握使用 PyTorch 和 fast.ai 進行快速原型設計
- 有效執行神經架構搜尋,使用 AutoML
- 輕鬆解釋機器學習模型,使用 Captum
- 設計 ResNets、LSTMs 和圖神經網路 (GNNs)
- 使用 Hugging Face 創建語言和視覺變壓器模型
**本書適合誰:**
本書適合數據科學家、機器學習工程師、機器學習研究人員和希望使用 PyTorch 實現進階深度學習模型的深度學習從業者。這本書非常適合那些希望從 TensorFlow 轉向 PyTorch 的讀者。需要具備使用 Python 進行深度學習的工作知識。