Modern Graph Theory Algorithms with Python: Harness the power of graph algorithms and real-world network applications using Python
Farrelly, Colleen, Mutombo, Franck Kalala, Giske, Michael
- 出版商: Packt Publishing
- 出版日期: 2024-06-07
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 290
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805127896
- ISBN-13: 9781805127895
-
相關分類:
Python、程式語言、Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms
Key Features
- Learn how to wrangle different types of datasets and analytics problems into networks
- Leverage graph theoretic algorithms to analyze data efficiently
- Apply the skills you gain to solve a variety of problems through case studies in Python
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description
We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale.
This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter.
By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.
What you will learn
- Transform different data types, such as spatial data, into network formats
- Explore common network science tools in Python
- Discover how geometry impacts spreading processes on networks
- Implement machine learning algorithms on network data features
- Build and query graph databases
- Explore new frontiers in network science such as quantum algorithms
Who this book is for
If you're a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations.
Table of Contents
- What is a Network?
- Wrangling Data into Networks with NetworkX and igraph
- Demographic Data
- Transportation Data
- Ecological Data
- Stock Market Data
- Goods Prices/Sales Data
- Dynamic Social Networks
- Machine Learning for Networks
- Pathway Mining
- Mapping Language Families - an Ontological Approach
- Graph Databases
- Putting It All Together
- New Frontiers
商品描述(中文翻譯)
解決具有挑戰性和計算密集型的分析問題,利用網絡科學和圖算法
主要特點
- 學習如何將不同類型的數據集和分析問題轉換為網絡
- 利用圖論算法高效分析數據
- 應用所學技能通過 Python 的案例研究解決各種問題
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述
我們生活在大數據時代,可擴展的解決方案是必需的。網絡科學利用圖論的力量和靈活的數據結構來大規模分析大數據。
本書將引導您了解網絡科學的基礎,展示如何將不同類型的數據(如空間數據和時間序列數據)轉換為網絡結構。您將接觸到網絡科學的核心工具,以在 Python 中分析現實世界的案例研究。隨著進展,您將學會如何預測假新聞的傳播、追蹤當地市場的價格模式、預測股市崩盤以及阻止疫情擴散。之後,您將學習網絡科學中的高級技術,例如創建和查詢圖形數據庫、使用圖神經網絡(GNNs)對數據集進行分類,以及挖掘教育路徑以獲取學生成功的見解。本書中的案例研究將為您提供從頭到尾實施每章所學內容的範例。
在本書結束時,您將能夠將自己的數據集轉換為網絡科學問題,並使用 Python 擴展解決方案。
您將學到的內容
- 將不同類型的數據(如空間數據)轉換為網絡格式
- 探索 Python 中常見的網絡科學工具
- 發現幾何如何影響網絡上的傳播過程
- 在網絡數據特徵上實施機器學習算法
- 建立和查詢圖形數據庫
- 探索網絡科學中的新前沿,如量子算法
本書適合誰
如果您是分析數據的研究人員或行業專業人士,並對網絡科學方法感興趣,本書適合您。為了充分利用本書,您需要具備基本的 Python 知識,包括 pandas 和 NumPy,以及一些處理數據集的經驗。本書也非常適合任何對網絡科學感興趣並想了解圖算法如何用於解決科學和工程問題的人。R 程式設計師也可能會發現本書有幫助,因為許多算法也有 R 的實現。
目錄
- 什麼是網絡?
- 使用 NetworkX 和 igraph 將數據轉換為網絡
- 人口統計數據
- 交通數據
- 生態數據
- 股市數據
- 商品價格/銷售數據
- 動態社交網絡
- 網絡的機器學習
- 路徑挖掘
- 地圖語言家族 - 一種本體論方法
- 圖形數據庫
- 整合所有內容
- 新前沿