Accelerate Model Training with PyTorch 2.X: Build more accurate models by boosting the model training process
暫譯: 使用 PyTorch 2.X 加速模型訓練:透過提升模型訓練過程來構建更準確的模型
Alves, Maicon Melo, Drummond, Lúcia Maria de Assumpção
- 出版商: Packt Publishing
- 出版日期: 2024-04-30
- 售價: $1,880
- 貴賓價: 9.5 折 $1,786
- 語言: 英文
- 頁數: 230
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805120107
- ISBN-13: 9781805120100
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Dramatically accelerate the building process of complex models using PyTorch to extract the best performance from any computing environment
Key Features- Reduce the model-building time by applying optimization techniques and approaches
- Harness the computing power of multiple devices and machines to boost the training process
- Focus on model quality by quickly evaluating different model configurations
- Purchase of the print or Kindle book includes a free PDF eBook
Penned by an expert in High-Performance Computing (HPC) with over 25 years of experience, this book is your guide to enhancing the performance of model training using PyTorch, one of the most widely adopted machine learning frameworks.
You'll start by understanding how model complexity impacts training time before discovering distinct levels of performance tuning to expedite the training process. You'll also learn how to use a new PyTorch feature to compile the model and train it faster, alongside learning how to benefit from specialized libraries to optimize the training process on the CPU. As you progress, you'll gain insights into building an efficient data pipeline to keep accelerators occupied during the entire training execution and explore strategies for reducing model complexity and adopting mixed precision to minimize computing time and memory consumption. The book will get you acquainted with distributed training and show you how to use PyTorch to harness the computing power of multicore systems and multi-GPU environments available on single or multiple machines.
By the end of this book, you'll be equipped with a suite of techniques, approaches, and strategies to speed up training, so you can focus on what really matters-building stunning models!
What you will learn- Compile the model to train it faster
- Use specialized libraries to optimize the training on the CPU
- Build a data pipeline to boost GPU execution
- Simplify the model through pruning and compression techniques
- Adopt automatic mixed precision without penalizing the model's accuracy
- Distribute the training step across multiple machines and devices
This book is for intermediate-level data scientists who want to learn how to leverage PyTorch to speed up the training process of their machine learning models by employing a set of optimization strategies and techniques. To make the most of this book, familiarity with basic concepts of machine learning, PyTorch, and Python is essential. However, there is no obligation to have a prior understanding of distributed computing, accelerators, or multicore processors.
Table of Contents- Deconstructing the Training Process
- Training Models Faster
- Compiling the Model
- Using Specialized Libraries
- Building an Efficient Data Pipeline
- Simplifying the Model
- Adopting Mixed Precision
- Distributed Training at a Glance
- Training with Multiple CPUs
- Training with Multiple GPUs
- Training with Multiple Machines
商品描述(中文翻譯)
顯著加速使用 PyTorch 建立複雜模型的過程,以從任何計算環境中提取最佳性能主要特點
- 透過應用優化技術和方法來減少模型建立時間
- 利用多個設備和機器的計算能力來提升訓練過程
- 專注於模型質量,快速評估不同的模型配置
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
本書由一位擁有超過 25 年經驗的高效能計算 (HPC) 專家撰寫,是您使用 PyTorch 提升模型訓練性能的指南,PyTorch 是最廣泛採用的機器學習框架之一。
您將首先了解模型複雜性如何影響訓練時間,然後發現不同層次的性能調整,以加快訓練過程。您還將學習如何使用新的 PyTorch 功能來編譯模型並加快訓練速度,同時學習如何利用專門的庫來優化 CPU 上的訓練過程。隨著進展,您將獲得建立高效數據管道的見解,以在整個訓練執行過程中保持加速器的運作,並探索減少模型複雜性和採用混合精度的策略,以最小化計算時間和內存消耗。本書將使您熟悉分散式訓練,並展示如何使用 PyTorch 利用單台或多台機器上的多核心系統和多 GPU 環境的計算能力。
在本書結束時,您將掌握一套技術、方法和策略,以加速訓練,讓您能專注於真正重要的事情——建立驚人的模型!
您將學到的內容- 編譯模型以加快訓練速度
- 使用專門的庫來優化 CPU 上的訓練
- 建立數據管道以提升 GPU 執行效率
- 透過剪枝和壓縮技術簡化模型
- 在不影響模型準確性的情況下採用自動混合精度
- 將訓練步驟分散到多台機器和設備上
本書適合中級數據科學家,他們希望學習如何利用 PyTorch 通過採用一系列優化策略和技術來加速機器學習模型的訓練過程。為了充分利用本書,熟悉機器學習、PyTorch 和 Python 的基本概念是必須的。然而,並不需要事先了解分散式計算、加速器或多核心處理器。
目錄- 解構訓練過程
- 更快地訓練模型
- 編譯模型
- 使用專門的庫
- 建立高效的數據管道
- 簡化模型
- 採用混合精度
- 分散式訓練概覽
- 使用多個 CPU 進行訓練
- 使用多個 GPU 進行訓練
- 使用多台機器進行訓練