50 Algorithms Every Programmer Should Know : An unbeatable arsenal of algorithmic solutions for real-world problems, 2/e (Paperback)
暫譯: 每位程式設計師必知的50種演算法:解決現實問題的無敵演算法武器,第二版(平裝本)
Ahmad, Imran
- 出版商: Packt Publishing
- 出版日期: 2023-09-29
- 售價: $1,860
- 貴賓價: 9.5 折 $1,767
- 語言: 英文
- 頁數: 538
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803247762
- ISBN-13: 9781803247762
-
相關分類:
Algorithms-data-structures
立即出貨 (庫存=1)
買這商品的人也買了...
-
$534$507 -
$2,200$2,090 -
$1,860$1,767 -
$654$621 -
$1,900$1,805 -
$2,850$2,708 -
$894$849 -
$654$621 -
$1,900$1,805 -
$708$673 -
$659$626 -
$774$735 -
$1,940$1,843 -
$509數以達理:量化研發管理指南
-
$1,900$1,805 -
$2,223X64 Assembly Language Step-By-Step: Programming with Linux 4th
-
$534$507 -
$2,185Automating Data Quality Monitoring: Scaling Beyond Rules with Machine Learning (Paperback)
-
$2,660Head First Software Architecture: A Learner's Guide to Architectural Thinking (Paperback)
-
$1,650$1,568 -
$301基於近鄰思想和同步模型的聚類算法
-
$1,980$1,881 -
$2,242Defensive Security Handbook: Best Practices for Securing Infrastructure (Paperback)
-
$1,650$1,568 -
$654$621
相關主題
商品描述
Solve classic computer science problems from fundamental algorithms, such as sorting and searching, to modern algorithms in machine learning and cryptography
Key Features:
- Discussion on Advanced Deep Learning Architectures
- New chapters on sequential models explaining modern deep learning techniques, like LSTMs, GRUs, and RNNs and Large Language Models (LLMs)
- Explore newer topics, such as how to handle hidden bias in data and the explainability of the algorithms
- Get to grips with different programming algorithms and choose the right data structures for their optimal implementation
Book Description:
The ability to use algorithms to solve real-world problems is a must-have skill for any developer or programmer. This book will help you not only to develop the skills to select and use an algorithm to tackle problems in the real world by understanding how it works.
You'll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, with the help of practical examples. As you advance, you'll learn about linear programming, page ranking, and graphs, and even work with machine learning algorithms to understand the math and logic behind them.
Case studies will show you how to apply these algorithms optimally before you focus on deep learning algorithms and will learn about different types of deep learning models along with their practical use.
You will also learn about modern sequential models and their variants, algorithms, methodologies, and architectures that used to implement Large Language Models (LLMs) such as ChatGPT.
Finally, you'll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks.
By the end of this programming book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.
What You Will Learn:
- Design algorithms for solving complex problems
- Become familiar with neural networks and deep learning techniques
- Explore existing data structures and algorithms found in Python libraries
- Implement graph algorithms for fraud detection using network analysis
- Work with machine learning algorithms to cluster similar tweets and process Twitter data in real time
- Create a recommendation engine that suggests relevant movies to subscribers
- Implement foolproof security using symmetric and asymmetric encryption on Google Cloud Platform
Who this book is for:
This computer science book is for programmers or developers who want to understand the use of algorithms for problem-solving and writing efficient code.
Whether you are a beginner looking to learn the most used algorithms concisely or an experienced programmer looking to explore cutting-edge algorithms in data science, machine learning, and cryptography, you'll find this book useful.
Python programming experience is a must, knowledge of data science will be helpful but not necessary.
商品描述(中文翻譯)
解決經典計算機科學問題,從基本演算法,如排序和搜尋,到現代演算法在機器學習和密碼學中的應用
主要特色:
- 討論先進的深度學習架構
- 新增有關序列模型的章節,解釋現代深度學習技術,如 LSTMs、GRUs、RNNs 和大型語言模型 (LLMs)
- 探索更新的主題,例如如何處理數據中的隱藏偏見及演算法的可解釋性
- 掌握不同的程式設計演算法,並選擇合適的資料結構以達到最佳實現
書籍描述:
能夠使用演算法解決現實世界的問題是任何開發者或程式設計師必備的技能。本書將幫助您不僅發展選擇和使用演算法來解決現實世界問題的技能,還能理解其運作方式。
您將從演算法的介紹開始,發現各種演算法設計技術,然後探索如何實現不同類型的演算法,並通過實際範例來輔助學習。隨著進步,您將學習線性規劃、頁面排名和圖形,甚至會使用機器學習演算法來理解其背後的數學和邏輯。
案例研究將展示如何最佳應用這些演算法,然後您將專注於深度學習演算法,並學習不同類型的深度學習模型及其實際應用。
您還將了解現代序列模型及其變體、演算法、方法論和架構,這些都是用來實現大型語言模型 (LLMs) 的,例如 ChatGPT。
最後,您將熟悉使能平行處理的技術,使您能夠將這些演算法用於計算密集型任務。
在本書結束時,您將能夠熟練地使用各種演算法解決現實世界的計算問題。
您將學到的內容:
- 設計演算法以解決複雜問題
- 熟悉神經網絡和深度學習技術
- 探索 Python 函式庫中現有的資料結構和演算法
- 實現圖形演算法以使用網絡分析進行詐騙檢測
- 使用機器學習演算法對相似的推文進行聚類,並實時處理 Twitter 數據
- 創建推薦引擎,向訂閱者建議相關電影
- 在 Google Cloud Platform 上使用對稱和非對稱加密實現萬無一失的安全性
本書適合誰:
這本計算機科學書籍適合希望理解演算法在問題解決和編寫高效代碼中的應用的程式設計師或開發者。
無論您是希望簡明學習最常用演算法的初學者,還是希望探索數據科學、機器學習和密碼學中尖端演算法的經驗豐富的程式設計師,您都會發現本書非常有用。
具備 Python 程式設計經驗是必須的,對數據科學的知識將有幫助,但不是必要的。