Machine Learning Engineering on AWS: Build, scale, and secure machine learning systems and MLOps pipelines in production (Paperback)
暫譯: AWS上的機器學習工程:在生產環境中構建、擴展和保護機器學習系統及MLOps管道(平裝本)
Lat, Joshua Arvin
- 出版商: Packt Publishing
- 出版日期: 2022-10-27
- 售價: $1,575
- 貴賓價: 9.5 折 $1,496
- 語言: 英文
- 頁數: 530
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803247592
- ISBN-13: 9781803247595
-
相關分類:
Amazon Web Services、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$580$493 -
$520$410 -
$620$484 -
$403PostgreSQL 即學即用, 3/e
相關主題
商品描述
Work seamlessly with production-ready machine learning systems and pipelines on AWS by addressing key pain points encountered in the ML life cycle
Key Features
- Gain practical knowledge of managing ML workloads on AWS using Amazon SageMaker, Amazon EKS, and more
- Use container and serverless services to solve a variety of ML engineering requirements
- Design, build, and secure automated MLOps pipelines and workflows on AWS
Book Description
There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production.
This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS.
By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
What you will learn
- Find out how to train and deploy TensorFlow and PyTorch models on AWS
- Use containers and serverless services for ML engineering requirements
- Discover how to set up a serverless data warehouse and data lake on AWS
- Build automated end-to-end MLOps pipelines using a variety of services
- Use AWS Glue DataBrew and SageMaker Data Wrangler for data engineering
- Explore different solutions for deploying deep learning models on AWS
- Apply cost optimization techniques to ML environments and systems
- Preserve data privacy and model privacy using a variety of techniques
Who this book is for
This book is for machine learning engineers, data scientists, and AWS cloud engineers interested in working on production data engineering, machine learning engineering, and MLOps requirements using a variety of AWS services such as Amazon EC2, Amazon Elastic Kubernetes Service (EKS), Amazon SageMaker, AWS Glue, Amazon Redshift, AWS Lake Formation, and AWS Lambda -- all you need is an AWS account to get started. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
商品描述(中文翻譯)
在 AWS 上無縫地與生產就緒的機器學習系統和管道協作,解決機器學習生命週期中遇到的關鍵痛點。
主要特點
- 獲得在 AWS 上使用 Amazon SageMaker、Amazon EKS 等管理機器學習工作負載的實用知識
- 使用容器和無伺服器服務解決各種機器學習工程需求
- 在 AWS 上設計、構建和保護自動化的 MLOps 管道和工作流程
書籍描述
隨著對具備機器學習(ML)工程需求經驗的專業人士以及具備自動化複雜 MLOps 管道雲端知識的專業人士需求日益增加,本書探討了多種 AWS 服務,如 Amazon Elastic Kubernetes Service、AWS Glue、AWS Lambda、Amazon Redshift 和 AWS Lake Formation,這些服務可供機器學習從業者利用,以滿足生產中的各種數據工程和機器學習工程需求。
本書涵蓋了基本概念以及逐步指導,旨在幫助您深入了解如何在雲端管理和保護機器學習工作負載。隨著您逐步閱讀各章,您將發現如何在 AWS 上訓練和部署 TensorFlow 和 PyTorch 深度學習模型時使用多種容器和無伺服器解決方案。您還將深入探討經驗證的成本優化技術以及數據隱私和模型隱私保護策略,並在使用每個 AWS 服務時探索最佳實踐。
在本書結束時,您將能夠構建、擴展和保護自己的機器學習系統和管道,這將使您獲得架構自定義解決方案所需的經驗和信心,並使用多種 AWS 服務滿足機器學習工程需求。
您將學到的內容
- 瞭解如何在 AWS 上訓練和部署 TensorFlow 和 PyTorch 模型
- 使用容器和無伺服器服務滿足機器學習工程需求
- 探索如何在 AWS 上設置無伺服器數據倉庫和數據湖
- 使用多種服務構建自動化的端到端 MLOps 管道
- 使用 AWS Glue DataBrew 和 SageMaker Data Wrangler 進行數據工程
- 探索在 AWS 上部署深度學習模型的不同解決方案
- 將成本優化技術應用於機器學習環境和系統
- 使用多種技術保護數據隱私和模型隱私
本書適合對象
本書適合機器學習工程師、數據科學家和 AWS 雲端工程師,這些人對使用多種 AWS 服務(如 Amazon EC2、Amazon Elastic Kubernetes Service (EKS)、Amazon SageMaker、AWS Glue、Amazon Redshift、AWS Lake Formation 和 AWS Lambda)進行生產數據工程、機器學習工程和 MLOps 需求感興趣——您只需一個 AWS 帳戶即可開始。對 AWS、機器學習和 Python 程式語言的先前知識將幫助您更有效地掌握本書所涵蓋的概念。
目錄大綱
- Introduction to ML Engineering on AWS
- Deep Learning AMIs
- Deep Learning Containers
- Serverless Data Management on AWS
- Pragmatic Data Processing and Analysis
- SageMaker Training and Debugging Solutions
- SageMaker Deployment Solutions
- Model Monitoring and Management Solutions
- Security, Governance, and Compliance Strategies
- Machine Learning Pipelines with Kubeflow on Amazon EKS
- Machine Learning Pipelines with SageMaker Pipelines
目錄大綱(中文翻譯)
- Introduction to ML Engineering on AWS
- Deep Learning AMIs
- Deep Learning Containers
- Serverless Data Management on AWS
- Pragmatic Data Processing and Analysis
- SageMaker Training and Debugging Solutions
- SageMaker Deployment Solutions
- Model Monitoring and Management Solutions
- Security, Governance, and Compliance Strategies
- Machine Learning Pipelines with Kubeflow on Amazon EKS
- Machine Learning Pipelines with SageMaker Pipelines