Federated Learning with Python: Design and implement a federated learning system and develop applications using existing frameworks
暫譯: 使用 Python 的聯邦學習:設計與實作聯邦學習系統並利用現有框架開發應用程式
, Kiyoshi Nakayama, Jeno, George
- 出版商: Packt Publishing
- 出版日期: 2022-10-28
- 售價: $1,880
- 貴賓價: 9.5 折 $1,786
- 語言: 英文
- 頁數: 326
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180324710X
- ISBN-13: 9781803247106
-
相關分類:
Python、程式語言
立即出貨 (庫存=1)
買這商品的人也買了...
-
$7,120$6,764 -
$7,120$6,764 -
$4,560$4,332 -
$6,740$6,403 -
$4,940$4,693 -
$5,510$5,235 -
$2,600$2,470 -
$6,460$6,137 -
$6,740$6,403 -
$7,120$6,764 -
$1,700$1,615 -
$4,590$4,361 -
$1,800$1,710 -
$5,780$5,491 -
$4,590$4,361 -
$7,140$6,783 -
$7,870$7,477 -
$4,100$3,895 -
$1,120$1,064 -
$1,120$1,064 -
$910$865 -
$1,030$979 -
$2,380$2,261 -
$2,300$2,185 -
$1,670$1,587
相關主題
商品描述
Learn the essential skills for building an authentic federated learning system with Python and take your machine learning applications to the next level
Key Features:
- Design distributed systems that can be applied to real-world federated learning applications at scale
- Discover multiple aggregation schemes applicable to various ML settings and applications
- Develop a federated learning system that can be tested in distributed machine learning settings
Book Description:
Federated learning (FL) is a paradigm-shifting technology in AI that enables and accelerates machine learning (ML), allowing you to work on private data. It has become a must-have solution for most enterprise industries, making it a critical part of your learning journey. This book helps you get to grips with the building blocks of FL and how the systems work and interact with each other using solid coding examples.
FL is more than just aggregating collected ML models and bringing them back to the distributed agents. This book teaches you about all the essential basics of FL and shows you how to design distributed systems and learning mechanisms carefully so as to synchronize the dispersed learning processes and synthesize the locally trained ML models in a consistent manner. This way, you'll be able to create a sustainable and resilient FL system that can constantly function in real-world operations. This book goes further than simply outlining FL's conceptual framework or theory, as is the case with the majority of research-related literature.
By the end of this book, you'll have an in-depth understanding of the FL system design and implementation basics and be able to create an FL system and applications that can be deployed to various local and cloud environments.
What You Will Learn:
- Discover the challenges related to centralized big data ML that we currently face along with their solutions
- Understand the theoretical and conceptual basics of FL
- Acquire design and architecting skills to build an FL system
- Explore the actual implementation of FL servers and clients
- Find out how to integrate FL into your own ML application
- Understand various aggregation mechanisms for diverse ML scenarios
- Discover popular use cases and future trends in FL
Who this book is for:
This book is for machine learning engineers, data scientists, and artificial intelligence (AI) enthusiasts who want to learn about creating machine learning applications empowered by federated learning. You'll need basic knowledge of Python programming and machine learning concepts to get started with this book.
商品描述(中文翻譯)
學習使用 Python 建立真實的聯邦學習系統所需的基本技能,並將您的機器學習應用提升到新水平
主要特點:
- 設計可應用於實際聯邦學習應用的大規模分散式系統
- 探索適用於各種機器學習設定和應用的多種聚合方案
- 開發可在分散式機器學習環境中進行測試的聯邦學習系統
書籍描述:
聯邦學習(Federated Learning, FL)是一種在人工智慧(AI)領域具有顛覆性技術的範式,能夠促進和加速機器學習(ML),使您能夠在私有數據上進行工作。它已成為大多數企業行業的必備解決方案,成為您學習旅程中的關鍵部分。本書幫助您掌握聯邦學習的基本構建塊,以及系統如何運作和相互交互,並提供穩固的程式碼範例。
聯邦學習不僅僅是聚合收集的機器學習模型並將其帶回分散式代理。本書教您聯邦學習的所有基本知識,並展示如何仔細設計分散式系統和學習機制,以同步分散的學習過程,並以一致的方式合成本地訓練的機器學習模型。這樣,您將能夠創建一個可持續且具韌性的聯邦學習系統,能夠在現實世界的操作中持續運行。本書不僅僅是概述聯邦學習的概念框架或理論,這在大多數研究相關文獻中是常見的情況。
在本書結束時,您將深入了解聯邦學習系統設計和實施的基本知識,並能夠創建可部署到各種本地和雲端環境的聯邦學習系統和應用。
您將學到什麼:
- 發現與當前集中式大數據機器學習相關的挑戰及其解決方案
- 理解聯邦學習的理論和概念基礎
- 獲得設計和架構技能以建立聯邦學習系統
- 探索聯邦學習伺服器和客戶端的實際實施
- 了解如何將聯邦學習整合到您自己的機器學習應用中
- 理解各種聚合機制以應對多樣的機器學習場景
- 發現聯邦學習的熱門用例和未來趨勢
本書適合誰:
本書適合機器學習工程師、數據科學家和人工智慧(AI)愛好者,想要學習如何創建由聯邦學習驅動的機器學習應用。您需要具備基本的 Python 程式設計和機器學習概念知識,以便開始閱讀本書。