Data Augmentation with Python: Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data (Paperback)
暫譯: 使用 Python 進行資料增強:透過資料增強方法提升深度學習在影像、文本、音訊和表格資料上的準確性 (平裝本)

Haba, Duc

  • 出版商: Packt Publishing
  • 出版日期: 2023-04-28
  • 售價: $1,710
  • 貴賓價: 9.5$1,625
  • 語言: 英文
  • 頁數: 394
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1803246456
  • ISBN-13: 9781803246451
  • 相關分類: Python程式語言DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Boost your AI and generative AI accuracy using real-world datasets with over 150 functional object-oriented methods and open source libraries

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

  • Explore beautiful, customized charts and infographics in full color
  • Work with fully functional OO code using open source libraries in the Python Notebook for each chapter
  • Unleash the potential of real-world datasets with practical data augmentation techniques

Book Description

Data is paramount in AI projects, especially for deep learning and generative AI, as forecasting accuracy relies on input datasets being robust. Acquiring additional data through traditional methods can be challenging, expensive, and impractical, and data augmentation offers an economical option to extend the dataset.

The book teaches you over 20 geometric, photometric, and random erasing augmentation methods using seven real-world datasets for image classification and segmentation. You'll also review eight image augmentation open source libraries, write object-oriented programming (OOP) wrapper functions in Python Notebooks, view color image augmentation effects, analyze safe levels and biases, as well as explore fun facts and take on fun challenges. As you advance, you'll discover over 20 character and word techniques for text augmentation using two real-world datasets and excerpts from four classic books. The chapter on advanced text augmentation uses machine learning to extend the text dataset, such as Transformer, Word2vec, BERT, GPT-2, and others. While chapters on audio and tabular data have real-world data, open source libraries, amazing custom plots, and Python Notebook, along with fun facts and challenges.

By the end of this book, you will be proficient in image, text, audio, and tabular data augmentation techniques.

What you will learn

  • Write OOP Python code for image, text, audio, and tabular data
  • Access over 150,000 real-world datasets from the Kaggle website
  • Analyze biases and safe parameters for each augmentation method
  • Visualize data using standard and exotic plots in color
  • Discover 32 advanced open source augmentation libraries
  • Explore machine learning models, such as BERT and Transformer
  • Meet Pluto, an imaginary digital coding companion
  • Extend your learning with fun facts and fun challenges

Who this book is for

This book is for data scientists and students interested in the AI discipline. Advanced AI or deep learning skills are not required; however, knowledge of Python programming and familiarity with Jupyter Notebooks are essential to understanding the topics covered in this book.

商品描述(中文翻譯)

提升您的 AI 和生成式 AI 準確性,使用超過 150 種功能性物件導向方法和開源庫的真實世界數據集

購買印刷版或 Kindle 書籍包括免費 PDF 電子書

主要特點

- 探索美麗的自訂圖表和全彩資訊圖
- 使用每章的開源庫在 Python Notebook 中編寫完全功能的 OO 代碼
- 利用實際數據增強技術釋放真實世界數據集的潛力

書籍描述

在 AI 項目中,數據至關重要,特別是對於深度學習和生成式 AI,因為預測準確性依賴於輸入數據集的穩健性。通過傳統方法獲取額外數據可能具有挑戰性、昂貴且不切實際,而數據增強提供了一種經濟的選擇來擴展數據集。

本書教您使用七個真實世界數據集進行圖像分類和分割的 20 多種幾何、光度和隨機擦除增強方法。您還將回顧八個圖像增強的開源庫,在 Python Notebooks 中編寫物件導向程式設計 (OOP) 包裝函數,查看彩色圖像增強效果,分析安全水平和偏見,並探索有趣的事實和挑戰。隨著進展,您將發現使用兩個真實世界數據集和四本經典書籍摘錄的 20 多種字符和單詞技術進行文本增強。關於進階文本增強的章節使用機器學習來擴展文本數據集,例如 Transformer、Word2vec、BERT、GPT-2 等。音頻和表格數據的章節包含真實世界數據、開源庫、驚人的自訂圖表和 Python Notebook,以及有趣的事實和挑戰。

在本書結束時,您將熟練掌握圖像、文本、音頻和表格數據增強技術。

您將學到的內容

- 為圖像、文本、音頻和表格數據編寫 OOP Python 代碼
- 從 Kaggle 網站訪問超過 150,000 個真實世界數據集
- 分析每種增強方法的偏見和安全參數
- 使用標準和異國情調的彩色圖表可視化數據
- 發現 32 個先進的開源增強庫
- 探索機器學習模型,如 BERT 和 Transformer
- 認識 Pluto,一個虛構的數位編碼夥伴
- 通過有趣的事實和挑戰擴展您的學習

本書適合誰

本書適合對 AI 學科感興趣的數據科學家和學生。無需高級 AI 或深度學習技能;然而,了解 Python 程式設計和熟悉 Jupyter Notebooks 對於理解本書所涵蓋的主題至關重要。

目錄大綱

1. Data Augmentation Made Easy
2. Biases in Data Augmentation
3. Image Augmentation for Classification
4. Image Augmentation for Segmentation
5. Text Augmentati
6. Text Augmentation with Machine Learning
7. Audio Data Augmentation
8. Audio Data Augmentation with Spectrogram
9. Tabular Data Augmentation

目錄大綱(中文翻譯)

1. Data Augmentation Made Easy

2. Biases in Data Augmentation

3. Image Augmentation for Classification

4. Image Augmentation for Segmentation

5. Text Augmentati

6. Text Augmentation with Machine Learning

7. Audio Data Augmentation

8. Audio Data Augmentation with Spectrogram

9. Tabular Data Augmentation