Google Machine Learning and Generative AI for Solutions Architects: ​Build efficient and scalable AI/ML solutions on Google Cloud (Google雲端的機器學習與生成式AI:為解決方案架構師打造高效可擴展的AI/ML解決方案)
Kavanagh, Kieran, Vergadia, Priyanka
- 出版商: Packt Publishing
- 出版日期: 2024-06-28
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 552
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803245271
- ISBN-13: 9781803245270
-
相關分類:
Google Cloud、JVM 語言、人工智慧、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Architect and run real-world AI/ML solutions at scale on Google Cloud, and discover best practices to address common industry challenges effectively
Key Features:
- Understand key concepts, from fundamentals through to complex topics, via a methodical approach
- Build real-world end-to-end MLOps solutions and generative AI applications on Google Cloud
- Get your hands on a code repository with over 20 hands-on projects for all stages of the ML model development lifecycle
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
Nearly all companies nowadays either already use or are trying to incorporate AI/ML into their businesses. While AI/ML research is undoubtedly complex, the building and running of apps that utilize AI/ML effectively is tougher. This book shows you exactly how to design and run AI/ML workloads successfully using years of experience some of the world's leading tech companies have to offer.
You'll begin by gaining a clear understanding of essential fundamental AI/ML concepts, before moving on to grasp complex topics with the help of examples and hands-on activities. This will help you eventually explore advanced, cutting-edge AI/ML applications that address real-world use cases in today's market. As you advance, you'll recognize the common challenges that companies face when implementing AI/ML workloads, and discover industry-proven best practices to overcome these challenges. The chapters also teach you about the vast AI/ML landscape on Google Cloud and how to implement all the steps needed in a typical AI/ML project. You'll use services such as BigQuery to prepare data; Vertex AI to train, deploy, monitor, and scale models in production; as well as MLOps to automate the entire process.
By the end of this book, you will be able to unlock the full potential of Google Cloud's AI/ML offerings.
What You Will Learn:
- Build solutions with open-source offerings on Google Cloud, such as TensorFlow, PyTorch, and Spark
- Source, understand, and prepare data for ML workloads
- Build, train, and deploy ML models on Google Cloud
- Create an effective MLOps strategy and implement MLOps workloads on Google Cloud
- Discover common challenges in typical AI/ML projects and get solutions from experts
- Explore vector databases and their importance in Generative AI applications
- Uncover new Gen AI patterns such as Retrieval Augmented Generation (RAG), agents, and agentic workflows
Who this book is for:
This book is for aspiring solutions architects looking to design and implement AI/ML solutions on Google Cloud. Although this book is suitable for both beginners and experienced practitioners, basic knowledge of Python and ML concepts is required. The book focuses on how AI/ML is used in the real world on Google Cloud. It briefly covers the basics at the beginning to establish a baseline for you, but it does not go into depth on the underlying mathematical concepts that are readily available in academic material.
Table of Contents
- AI/ML Concepts, Real-World Applications, and Challenges
- Understanding the ML Model Development Lifecycle
- AI/ML Tooling and the Google Cloud AI/ML Landscape
- Utilizing Google Cloud's High-Level AI Services
- Building Custom ML Models on Google Cloud
- Diving Deeper-Preparing and Processing Data for AI/ML Workloads on Google Cloud
- Feature Engineering and Dimensionality Reduction
- Hyperparameters and Optimization
- Neural Networks and Deep Learning
- (N.B. Please use the Read Sample option to see further chapters)
商品描述(中文翻譯)
架構並在 Google Cloud 上運行實際的 AI/ML 解決方案,並發現有效應對常見行業挑戰的最佳實踐
主要特點:
- 透過系統化的方法理解從基礎到複雜主題的關鍵概念
- 在 Google Cloud 上構建實際的端到端 MLOps 解決方案和生成式 AI 應用
- 獲得一個包含超過 20 個實作專案的代碼庫,涵蓋 ML 模型開發生命周期的各個階段
- 購買印刷版或 Kindle 版書籍可獲得免費 PDF 電子書
書籍描述:
如今幾乎所有公司都已經在使用或嘗試將 AI/ML 融入其業務。雖然 AI/ML 研究無疑是複雜的,但有效構建和運行利用 AI/ML 的應用則更具挑戰性。本書將向您展示如何成功設計和運行 AI/ML 工作負載,並分享一些全球領先科技公司多年的經驗。
您將首先清楚理解基本的 AI/ML 概念,然後通過範例和實作活動掌握複雜主題。這將幫助您最終探索解決當今市場上實際用例的先進、尖端 AI/ML 應用。隨著進展,您將認識到公司在實施 AI/ML 工作負載時面臨的共同挑戰,並發現行業驗證的最佳實踐來克服這些挑戰。本書的章節還將教您有關 Google Cloud 上廣泛的 AI/ML 生態系統,以及如何實施典型 AI/ML 專案所需的所有步驟。您將使用 BigQuery 來準備數據;使用 Vertex AI 來訓練、部署、監控和擴展生產中的模型;以及使用 MLOps 自動化整個過程。
在本書結束時,您將能夠充分發揮 Google Cloud 的 AI/ML 產品的潛力。
您將學到的內容:
- 在 Google Cloud 上使用開源產品(如 TensorFlow、PyTorch 和 Spark)構建解決方案
- 獲取、理解和準備 ML 工作負載所需的數據
- 在 Google Cloud 上構建、訓練和部署 ML 模型
- 創建有效的 MLOps 策略並在 Google Cloud 上實施 MLOps 工作負載
- 發現典型 AI/ML 專案中的常見挑戰並獲得專家的解決方案
- 探索向量數據庫及其在生成式 AI 應用中的重要性
- 揭示新的生成 AI 模式,如檢索增強生成(RAG)、代理和代理工作流程
本書適合對象:
本書適合希望在 Google Cloud 上設計和實施 AI/ML 解決方案的有志解決方案架構師。雖然本書適合初學者和有經驗的從業者,但需要具備基本的 Python 和 ML 概念知識。本書專注於 AI/ML 在 Google Cloud 上的實際應用,開頭簡要介紹基礎知識以建立基準,但不會深入探討學術材料中已有的數學概念。
目錄:
- AI/ML 概念、實際應用和挑戰
- 理解 ML 模型開發生命周期
- AI/ML 工具和 Google Cloud AI/ML 生態系統
- 利用 Google Cloud 的高級 AI 服務
- 在 Google Cloud 上構建自定義 ML 模型
- 深入探討:為 Google Cloud 上的 AI/ML 工作負載準備和處理數據
- 特徵工程和降維
- 超參數和優化
- 神經網絡和深度學習
- (注意:請使用閱讀範本選項查看後續章節)