Next-Generation Machine Learning with Spark: Covers Xgboost, Lightgbm, Spark Nlp, Distributed Deep Learning with Keras, and More
暫譯: 下一代機器學習與 Spark:涵蓋 Xgboost、Lightgbm、Spark NLP、使用 Keras 的分散式深度學習等內容

Quinto, Butch

商品描述

Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications.

The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry.

 

Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations.

 

 

What You Will Learn

 

  • Be introduced to machine learning, Spark, and Spark MLlib 2.4.x
  • Achieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM libraries
  • Detect anomalies with the Isolation Forest algorithm for Spark
  • Use the Spark NLP and Stanford CoreNLP libraries that support multiple languages
  • Optimize your ML workload with the Alluxio in-memory data accelerator for Spark
  • Use GraphX and GraphFrames for Graph Analysis
  • Perform image recognition using convolutional neural networks
  • Utilize the Keras framework and distributed deep learning libraries with Spark

 

 

Who This Book Is For

Data scientists and machine learning engineers who want to take their knowledge to the next level and use Spark and more powerful, next-generation algorithms and libraries beyond what is available in the standard Spark MLlib library; also serves as a primer for aspiring data scientists and engineers who need an introduction to machine learning, Spark, and Spark MLlib.

商品描述(中文翻譯)

訪問 Spark 平台的實際文檔和範例,以構建大規模、企業級的機器學習應用程式。

過去十年,機器學習領域出現了一系列驚人的進展。這些突破正在顛覆我們的日常生活,並對各行各業產生影響。

 

使用 Spark 的下一代機器學習 提供了對 Spark 和 Spark MLlib 的簡單介紹,並進一步介紹比標準 Spark MLlib 庫中可用的更強大、第三方的機器學習算法和庫。在本書結束時,您將能夠通過數十個實用範例和深入的解釋,將您的知識應用於實際案例。

 

 

您將學到什麼

 


  • 介紹機器學習、Spark 和 Spark MLlib 2.4.x

  • 使用 XGBoost4J-Spark 和 LightGBM 庫在 Spark 上實現閃電般快速的梯度提升

  • 使用 Isolation Forest 算法檢測異常

  • 使用支持多種語言的 Spark NLP 和 Stanford CoreNLP 庫

  • 使用 Alluxio 內存數據加速器優化您的 ML 工作負載

  • 使用 GraphX 和 GraphFrames 進行圖形分析

  • 使用卷積神經網絡進行圖像識別

  • 利用 Keras 框架和分佈式深度學習庫與 Spark 一起使用

 

 

本書適合誰

希望將知識提升到更高層次的數據科學家和機器學習工程師,並使用 Spark 及比標準 Spark MLlib 庫中可用的更強大、下一代的算法和庫;同時也適合有志於成為數據科學家和工程師的初學者,為他們提供機器學習、Spark 和 Spark MLlib 的入門介紹。

作者簡介

Butch Quinto is founder and Chief AI Officer at Intelvi AI, an artificial intelligence company that develops cutting-edge solutions for the defense, industrial, and transportation industries. As Chief AI Officer, Butch heads strategy, innovation, research, and development. Previously, he was the Director of Artificial Intelligence at a leading technology firm and Chief Data Officer at an AI startup. As Director of Analytics at Deloitte, Butch led the development of several enterprise-grade AI and IoT solutions as well as strategy, business development, and venture capital due diligence. He has more than 20 years of experience in various technology and leadership roles in several industries including banking and finance, telecommunications, government, utilities, transportation, e-commerce, retail, manufacturing, and bioinformatics. Butch is the author of Next-Generation Big Data (Apress) and a member of the Association for the Advancement of Artificial Intelligence and the American Association for the Advancement of Science.

作者簡介(中文翻譯)

Butch Quinto 是 Intelvi AI 的創辦人及首席人工智慧官,該公司專注於為國防、工業和運輸行業開發尖端的人工智慧解決方案。作為首席人工智慧官,Butch 負責策略、創新、研究和開發。在此之前,他曾擔任一家領先科技公司的人工智慧總監,以及一家人工智慧初創公司的首席數據官。作為 Deloitte 的分析總監,Butch 主導了多個企業級人工智慧和物聯網解決方案的開發,並負責策略、商業發展及風險投資的盡職調查。他在銀行與金融、電信、政府、公用事業、運輸、電子商務、零售、製造和生物資訊等多個行業擁有超過 20 年的技術和領導經驗。Butch 是 Next-Generation Big Data(Apress)的作者,並且是人工智慧促進協會及美國科學促進協會的成員。

最後瀏覽商品 (20)