Practical Deep Learning at Scale with MLflow: Bridge the gap between offline experimentation and online production
暫譯: 使用 MLflow 進行大規模實用深度學習:縮短離線實驗與線上生產之間的距離

Liu, Yong

  • 出版商: Packt Publishing
  • 出版日期: 2022-07-08
  • 售價: $1,680
  • 貴賓價: 9.5$1,596
  • 語言: 英文
  • 頁數: 288
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1803241330
  • ISBN-13: 9781803241333
  • 相關分類: DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Train, test, run, track, store, tune, deploy, and explain provenance-aware deep learning models and pipelines at scale with reproducibility using MLflow


Key Features:

  • Focus on deep learning models and MLflow to develop practical business AI solutions at scale
  • Ship deep learning pipelines from experimentation to production with provenance tracking
  • Learn to train, run, tune and deploy deep learning pipelines with explainability and reproducibility


Book Description:

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas.

From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You'll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you'll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox.

By the end of this book, you'll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.


What You Will Learn:

  • Understand MLOps and deep learning life cycle development
  • Track deep learning models, code, data, parameters, and metrics
  • Build, deploy, and run deep learning model pipelines anywhere
  • Run hyperparameter optimization at scale to tune deep learning models
  • Build production-grade multi-step deep learning inference pipelines
  • Implement scalable deep learning explainability as a service
  • Deploy deep learning batch and streaming inference services
  • Ship practical NLP solutions from experimentation to production


Who this book is for:

This book is for machine learning practitioners including data scientists, data engineers, ML engineers, and scientists who want to build scalable full life cycle deep learning pipelines with reproducibility and provenance tracking using MLflow. A basic understanding of data science and machine learning is necessary to grasp the concepts presented in this book.

商品描述(中文翻譯)

使用 MLflow 在大規模下訓練、測試、運行、追蹤、儲存、調整、部署和解釋具來源意識的深度學習模型和管道,並確保可重現性

主要特點:


  • 專注於深度學習模型和 MLflow,以大規模開發實用的商業 AI 解決方案

  • 從實驗到生產運送深度學習管道,並進行來源追蹤

  • 學習如何訓練、運行、調整和部署具可解釋性和可重現性的深度學習管道

書籍描述:
本書首先概述了深度學習 (DL) 生命週期和新興的機器學習運營 (MLOps) 領域,清晰地描繪了深度學習的四大支柱:數據、模型、代碼和可解釋性,以及 MLflow 在這些領域中的角色。

接下來,本書逐步引導您理解 MLflow 實驗的概念和使用模式,利用 MLflow 作為統一框架來追蹤 DL 數據、代碼和管道、模型、參數和指標的大規模運用。您還將處理在分散執行環境中運行 DL 管道的可重現性和來源追蹤,並通過 Ray Tune、Optuna 和 HyperBand 進行超參數優化 (HPO) 來調整 DL 模型。隨著進展,您將學習如何構建一個多步驟的 DL 推論管道,包括預處理和後處理步驟,使用 Ray Serve 和 AWS SageMaker 部署 DL 推論管道到生產環境,最後使用流行的 Shapley Additive Explanations (SHAP) 工具箱創建 DL 解釋服務 (EaaS)。

到本書結束時,您將建立基礎並獲得實踐經驗,能夠從初始的離線實驗到最終的部署和生產,開發一個 DL 管道解決方案,所有這一切都在可重現和開源的框架內進行。

您將學到的內容:


  • 理解 MLOps 和深度學習生命週期的開發

  • 追蹤深度學習模型、代碼、數據、參數和指標

  • 在任何地方構建、部署和運行深度學習模型管道

  • 在大規模下運行超參數優化以調整深度學習模型

  • 構建生產級的多步驟深度學習推論管道

  • 實現可擴展的深度學習可解釋性服務

  • 部署深度學習批次和串流推論服務

  • 從實驗到生產運送實用的 NLP 解決方案

本書適合誰:
本書適合機器學習從業者,包括數據科學家、數據工程師、ML 工程師和希望使用 MLflow 構建可擴展的全生命週期深度學習管道,並具備可重現性和來源追蹤的科學家。對數據科學和機器學習的基本理解是掌握本書所呈現概念的必要條件。