Reproducible Data Science with Pachyderm: Learn how to build version-controlled, end-to-end data pipelines using Pachyderm 2.0
暫譯: 可重現的數據科學與 Pachyderm:學習如何使用 Pachyderm 2.0 建立版本控制的端到端數據管道

Karslioglu, Svetlana

  • 出版商: Packt Publishing
  • 出版日期: 2022-03-18
  • 售價: $2,010
  • 貴賓價: 9.5$1,910
  • 語言: 英文
  • 頁數: 364
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1801074488
  • ISBN-13: 9781801074483
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

Create scalable and reliable data pipelines easily with Pachyderm

Key Features

- Learn how to build an enterprise-level reproducible data science platform with Pachyderm
- Deploy Pachyderm on cloud platforms such as AWS EKS, Google Kubernetes Engine, and Microsoft Azure Kubernetes Service
- Integrate Pachyderm with other data science tools, such as Pachyderm Notebooks

Book Description

Pachyderm is an open source project that enables data scientists to run reproducible data pipelines and scale them to an enterprise level. This book will teach you how to implement Pachyderm to create collaborative data science workflows and reproduce your ML experiments at scale.

You'll begin your journey by exploring the importance of data reproducibility and comparing different data science platforms. Next, you'll explore how Pachyderm fits into the picture and its significance, followed by learning how to install Pachyderm locally on your computer or a cloud platform of your choice. You'll then discover the architectural components and Pachyderm's main pipeline principles and concepts. The book demonstrates how to use Pachyderm components to create your first data pipeline and advances to cover common operations involving data, such as uploading data to and from Pachyderm to create more complex pipelines. Based on what you've learned, you'll develop an end-to-end ML workflow, before trying out the hyperparameter tuning technique and the different supported Pachyderm language clients. Finally, you'll learn how to use a SaaS version of Pachyderm with Pachyderm Notebooks.

By the end of this book, you will learn all aspects of running your data pipelines in Pachyderm and manage them on a day-to-day basis.

What you will learn

- Understand the importance of reproducible data science for enterprise
- Explore the basics of Pachyderm, such as commits and branches
- Upload data to and from Pachyderm
- Implement common pipeline operations in Pachyderm
- Create a real-life example of hyperparameter tuning in Pachyderm
- Combine Pachyderm with Pachyderm language clients in Python and Go

Who this book is for

This book is for new as well as experienced data scientists and machine learning engineers who want to build scalable infrastructures for their data science projects. Basic knowledge of Python programming and Kubernetes will be beneficial. Familiarity with Golang will be helpful.

商品描述(中文翻譯)

輕鬆建立可擴展且可靠的數據管道,使用 Pachyderm

主要特點

- 學習如何使用 Pachyderm 建立企業級可重現的數據科學平台

- 在 AWS EKS、Google Kubernetes Engine 和 Microsoft Azure Kubernetes Service 等雲平台上部署 Pachyderm

- 將 Pachyderm 與其他數據科學工具整合,例如 Pachyderm Notebooks

書籍描述

Pachyderm 是一個開源項目,使數據科學家能夠運行可重現的數據管道並將其擴展到企業級。本書將教您如何實施 Pachyderm 以創建協作的數據科學工作流程,並在大規模上重現您的機器學習實驗。

您將從探索數據可重現性的重要性開始,並比較不同的數據科學平台。接下來,您將探索 Pachyderm 在整個過程中的角色及其重要性,然後學習如何在本地計算機或您選擇的雲平台上安裝 Pachyderm。接著,您將發現架構組件以及 Pachyderm 的主要管道原則和概念。本書展示了如何使用 Pachyderm 組件創建您的第一個數據管道,並進一步涵蓋涉及數據的常見操作,例如上傳數據到 Pachyderm 及從 Pachyderm 下載數據,以創建更複雜的管道。根據您所學的內容,您將開發一個端到端的機器學習工作流程,然後嘗試超參數調整技術以及不同支持的 Pachyderm 語言客戶端。最後,您將學習如何使用 Pachyderm Notebooks 的 SaaS 版本。

在本書結束時,您將學會在 Pachyderm 中運行數據管道的各個方面,並在日常基礎上管理它們。

您將學到什麼

- 理解可重現的數據科學對企業的重要性

- 探索 Pachyderm 的基本概念,例如提交和分支

- 上傳數據到 Pachyderm 及從 Pachyderm 下載數據

- 在 Pachyderm 中實施常見的管道操作

- 在 Pachyderm 中創建超參數調整的實際範例

- 將 Pachyderm 與 Python 和 Go 的 Pachyderm 語言客戶端結合使用

本書適合誰

本書適合新手以及有經驗的數據科學家和機器學習工程師,他們希望為自己的數據科學項目建立可擴展的基礎設施。具備 Python 編程和 Kubernetes 的基本知識將會有幫助。熟悉 Golang 將會更有幫助。

目錄大綱

1. The Problem of Data Reproducibility
2. Pachyderm Basics
3. Pachyderm Pipeline Specification
4. Installing Pachyderm Locally
5. Installing Pachyderm on a Cloud Platform
6. Creating Your First Pipeline
7. Pachyderm Operations
8. Creating an End-to-End Machine Learning Workflow
9. Distributed Hyperparameter Tuning with Pachyderm
10. Pachyderm Language Clients
11. Using Pachyderm Notebooks

目錄大綱(中文翻譯)

1. The Problem of Data Reproducibility

2. Pachyderm Basics

3. Pachyderm Pipeline Specification

4. Installing Pachyderm Locally

5. Installing Pachyderm on a Cloud Platform

6. Creating Your First Pipeline

7. Pachyderm Operations

8. Creating an End-to-End Machine Learning Workflow

9. Distributed Hyperparameter Tuning with Pachyderm

10. Pachyderm Language Clients

11. Using Pachyderm Notebooks