Automated Machine Learning on AWS: Fast-track the development of your production-ready machine learning applications the AWS way
暫譯: AWS上的自動化機器學習:以AWS方式快速開發生產就緒的機器學習應用程式

Potgieter, Trenton

  • 出版商: Packt Publishing
  • 出版日期: 2022-04-15
  • 售價: $2,000
  • 貴賓價: 9.5$1,900
  • 語言: 英文
  • 頁數: 420
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1801811822
  • ISBN-13: 9781801811828
  • 相關分類: Amazon Web ServicesMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more

Key Features

  • Explore the various AWS services that make automated machine learning easier
  • Recognize the role of DevOps and MLOps methodologies in pipeline automation
  • Get acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challenges

Book Description

AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services.

Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team.

By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production.

What you will learn

  • Employ SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning process
  • Understand how to use AutoGluon to automate complicated model building tasks
  • Use the AWS CDK to codify the machine learning process
  • Create, deploy, and rebuild a CI/CD pipeline on AWS
  • Build an ML workflow using AWS Step Functions and the Data Science SDK
  • Leverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC)
  • Discover how to use Amazon MWAA for a data-centric ML process

Who this book is for

This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book.

商品描述(中文翻譯)

**自動化機器學習應用程式的構建、訓練和部署過程,使用 AWS 解決方案,如 SageMaker Autopilot、AutoGluon、Step Functions、Amazon Managed Workflows for Apache Airflow 等**

#### 主要特點

- 探索各種 AWS 服務,使自動化機器學習變得更簡單
- 認識 DevOps 和 MLOps 方法論在管道自動化中的角色
- 熟悉其他 AWS 服務,如 Step Functions、MWAA 等,以克服自動化挑戰

#### 書籍描述

AWS 提供廣泛的解決方案,幫助您僅用幾行代碼自動化機器學習工作流程。通過這本實用的書籍,您將學會如何使用各種 AWS 服務自動化機器學習管道。

《AWS 上的自動化機器學習》首先快速概述機器學習管道/過程的樣貌,並強調在構建管道時可能面臨的典型挑戰。在整本書中,您將熟悉各種 AWS 解決方案,如 Amazon SageMaker Autopilot、AutoGluon 和 AWS Step Functions,通過實作範例自動化端到端的機器學習過程。這本書將向您展示如何構建、監控和執行機器學習過程的 CI/CD 管道,以及如何將 AWS 中的各種 CI/CD 服務應用於使用 Cloud Development Kit (CDK) 的案例。您將通過使用 Amazon Managed Services for Apache Airflow 了解什麼是以數據為中心的機器學習過程,然後構建一個受管理的 Airflow 環境。您還將涵蓋 MLSDLC 實施的關鍵成功標準,以及從平台工程團隊的角度使用 AWS CDK 創建自我變異的 CI/CD 管道的過程。

在這本 AWS 書籍結束時,您將能夠有效地自動化完整的機器學習管道並將其部署到生產環境中。

#### 您將學到什麼

- 使用 SageMaker Autopilot 和 Amazon SageMaker SDK 自動化機器學習過程
- 理解如何使用 AutoGluon 自動化複雜的模型構建任務
- 使用 AWS CDK 將機器學習過程編碼化
- 在 AWS 上創建、部署和重建 CI/CD 管道
- 使用 AWS Step Functions 和 Data Science SDK 構建機器學習工作流程
- 利用 Amazon SageMaker Feature Store 自動化機器學習軟體開發生命週期 (MLSDLC)
- 探索如何使用 Amazon MWAA 進行以數據為中心的機器學習過程

#### 本書適合誰

本書適合初學者以及有經驗的機器學習從業者,旨在自動化構建、訓練和部署基於機器學習的解決方案的過程,使用專門構建的 AWS 服務和其他服務。對端到端機器學習過程和概念、Python 編程和 AWS 的基本理解是充分利用本書的必要條件。

目錄大綱

1. Getting Started with Automated Machine Learning on AWS
2. Automating Machine Learning Model Development Using SageMaker Autopilot
3. Automating Complicated Model Development with AutoGluon
4. Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning
5. Continuous Deployment of a Production ML Model
6. Automating the Machine Learning Process Using AWS Step Functions
7. Building the ML Workflow Using AWS Step Functions
8. Automating the Machine Learning Process Using Apache Airflow
9. Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow
10. An Introduction to the Machine Learning Software Development Lifecycle (MLSDLC)
11. Continuous Integration, Deployment, and Training for the MLSDLC

目錄大綱(中文翻譯)

1. Getting Started with Automated Machine Learning on AWS

2. Automating Machine Learning Model Development Using SageMaker Autopilot

3. Automating Complicated Model Development with AutoGluon

4. Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

5. Continuous Deployment of a Production ML Model

6. Automating the Machine Learning Process Using AWS Step Functions

7. Building the ML Workflow Using AWS Step Functions

8. Automating the Machine Learning Process Using Apache Airflow

9. Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

10. An Introduction to the Machine Learning Software Development Lifecycle (MLSDLC)

11. Continuous Integration, Deployment, and Training for the MLSDLC