Machine Learning with Amazon SageMaker Cookbook: 80 proven recipes for data scientists and developers to perform machine learning experiments and depl
暫譯: 使用 Amazon SageMaker 的機器學習食譜:80 個經驗法則供資料科學家和開發人員進行機器學習實驗與部署
Lat, Joshua Arvin
- 出版商: Packt Publishing
- 出版日期: 2021-10-22
- 售價: $2,260
- 貴賓價: 9.5 折 $2,147
- 語言: 英文
- 頁數: 762
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1800567030
- ISBN-13: 9781800567030
-
相關分類:
Maker、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker
Key Features:
- Perform ML experiments with built-in and custom algorithms in SageMaker
- Explore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learn
- Use the different features and capabilities of SageMaker to automate relevant ML processes
Book Description:
Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems.
This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams.
By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
What You Will Learn:
- Train and deploy NLP, time series forecasting, and computer vision models to solve different business problems
- Push the limits of customization in SageMaker using custom container images
- Use AutoML capabilities with SageMaker Autopilot to create high-quality models
- Work with effective data analysis and preparation techniques
- Explore solutions for debugging and managing ML experiments and deployments
- Deal with bias detection and ML explainability requirements using SageMaker Clarify
- Automate intermediate and complex deployments and workflows using a variety of solutions
Who this book is for:
This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
商品描述(中文翻譯)
逐步解決方案指南:使用 Amazon SageMaker 準備、訓練和部署高品質的機器學習模型
主要特點:
- 在 SageMaker 中使用內建和自訂演算法進行機器學習實驗
- 探索在使用 TensorFlow、PyTorch、Hugging Face Transformers 和 scikit-learn 時的有效解決方案
- 利用 SageMaker 的不同功能和能力自動化相關的機器學習流程
書籍描述:
Amazon SageMaker 是一個完全管理的機器學習(ML)服務,幫助資料科學家和機器學習從業者管理機器學習實驗。在本書中,您將利用 Amazon SageMaker 的不同功能和特性來解決相關的資料科學和機器學習問題。
這本逐步指南包含 80 個經過驗證的食譜,旨在提供您所需的實作機器學習經驗,以便參與現實世界的實驗和專案。您將涵蓋在訓練和部署自然語言處理(NLP)、時間序列預測和計算機視覺模型時常用的演算法和技術。您將探索在 Amazon SageMaker 中使用深度學習庫和框架(如 TensorFlow、PyTorch 和 Hugging Face Transformers)的各種解決方案。您還將學習如何使用 SageMaker Clarify、SageMaker Model Monitor、SageMaker Debugger 和 SageMaker Experiments 來除錯、管理和監控多個機器學習實驗和部署。此外,您將更好地理解 SageMaker Feature Store、Autopilot 和 Pipelines 如何滿足資料科學團隊的特定需求。
在本書結束時,您將能夠將所學的不同解決方案結合起來,作為解決現實世界機器學習問題的基石。
您將學到什麼:
- 訓練和部署 NLP、時間序列預測和計算機視覺模型以解決不同的商業問題
- 使用自訂容器映像推動 SageMaker 的自訂化極限
- 利用 SageMaker Autopilot 的 AutoML 功能創建高品質模型
- 使用有效的資料分析和準備技術
- 探索除錯和管理機器學習實驗及部署的解決方案
- 使用 SageMaker Clarify 處理偏見檢測和機器學習可解釋性要求
- 使用各種解決方案自動化中等和複雜的部署及工作流程
本書適合誰:
本書適合開發人員、資料科學家和對使用 Amazon SageMaker 構建、分析和部署機器學習模型感興趣的機器學習從業者,提供 80 個逐步食譜。您只需一個 AWS 帳戶即可開始運行。對 AWS、機器學習和 Python 程式語言的先前知識將幫助您更有效地掌握本書所涵蓋的概念。