Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
暫譯: 使用 Python 偵錯機器學習模型:開發高效能、低偏差且可解釋的機器學習與深度學習模型

Madani, Ali

相關主題

商品描述

Master reproducible ML and DL models with Python and PyTorch to achieve high performance, explainability, and real-world success

 

Key Features:

 

  • Learn how to improve performance of your models and eliminate model biases
  • Strategically design your machine learning systems to minimize chances of failure in production
  • Discover advanced techniques to solve real-world challenges
  • Purchase of the print or Kindle book includes a free PDF eBook

 

Book Description:

 

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies.

 

By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.

 

What You Will Learn:

 

  • Enhance data quality and eliminate data flaws
  • Effectively assess and improve the performance of your models
  • Develop and optimize deep learning models with PyTorch
  • Mitigate biases to ensure fairness
  • Understand explainability techniques to improve model qualities
  • Use test-driven modeling for data processing and modeling improvement
  • Explore techniques to bring reliable models to production
  • Discover the benefits of causal and human-in-the-loop modeling

 

Who this book is for:

 

This book is for data scientists, analysts, machine learning engineers, Python developers, and students looking to build reliable, high-performance, and explainable machine learning models for production across diverse industrial applications. Fundamental Python skills are all you need to dive into the concepts and practical examples covered. Whether you're new to machine learning or an experienced practitioner, this book offers a breadth of knowledge and practical insights to elevate your modeling skills.

商品描述(中文翻譯)

掌握可重現的機器學習和深度學習模型,使用 Python 和 PyTorch 實現高效能、可解釋性和現實世界的成功

主要特點:


  • 學習如何提高模型的效能並消除模型偏見

  • 策略性設計您的機器學習系統,以最小化生產中的失敗機會

  • 發現解決現實世界挑戰的先進技術

  • 購買印刷版或 Kindle 書籍包括免費 PDF 電子書

書籍描述:

《使用 Python 調試機器學習模型》是一本全面的指南,帶您穿越掌握機器學習的整個範疇,從基礎概念到高級技術。它超越了基本知識,為您提供建立可靠、高效能模型所需的專業知識,適用於工業應用。無論您是數據科學家、分析師、機器學習工程師還是 Python 開發者,本書將使您能夠設計模組化系統以進行數據準備,準確訓練和測試模型,並將其無縫整合到更大的技術中。

通過彌合理論與實踐之間的鴻溝,您將學會如何評估模型效能、識別和解決問題,並利用 PyTorch 和 scikit-learn 中的最新深度學習和生成建模進展。您在實踐中開發高品質模型的旅程還將涵蓋因果建模和人類參與的建模以及機器學習的可解釋性。通過實作範例和清晰的解釋,您將發展出在醫療、金融和電子商務等領域提供影響力解決方案的技能。

您將學到的內容:


  • 提升數據質量並消除數據缺陷

  • 有效評估和改善模型的效能

  • 使用 PyTorch 開發和優化深度學習模型

  • 減少偏見以確保公平性

  • 理解可解釋性技術以改善模型品質

  • 使用測試驅動建模進行數據處理和模型改進

  • 探索將可靠模型投入生產的技術

  • 發現因果建模和人類參與建模的好處

本書適合誰:

本書適合數據科學家、分析師、機器學習工程師、Python 開發者以及希望為多樣化工業應用構建可靠、高效能和可解釋的機器學習模型的學生。您只需具備基本的 Python 技能,即可深入了解本書所涵蓋的概念和實作範例。無論您是機器學習的新手還是經驗豐富的從業者,本書都提供了廣泛的知識和實用見解,以提升您的建模技能。

最後瀏覽商品 (20)