Hands-On Deep Learning for IoT
Karim, MD Rezaul, Razzaque, Mohammad Abdur
- 出版商: Packt Publishing
- 出版日期: 2019-06-11
- 售價: $1,640
- 貴賓價: 9.5 折 $1,558
- 語言: 英文
- 頁數: 308
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789616131
- ISBN-13: 9781789616132
-
相關分類:
DeepLearning、物聯網 IoT
-
相關翻譯:
物聯網深度學習 (簡中版)
相關主題
商品描述
earn |
|
---|---|
About |
Artificial Intelligence is growing quickly, which is driven by advancements in neural networks(NN) and deep learning (DL). With an increase in investments in smart cities, smart healthcare, and industrial Internet of Things (IoT), commercialization of IoT will soon be at peak in which massive amounts of data generated by IoT devices need to be processed at scale. Hands-On Deep Learning for IoT will provide deeper insights into IoT data, which will start by introducing how DL fits into the context of making IoT applications smarter. It then covers how to build deep architectures using TensorFlow, Keras, and Chainer for IoT. You’ll learn how to train convolutional neural networks(CNN) to develop applications for image-based road faults detection and smart garbage separation, followed by implementing voice-initiated smart light control and home access mechanisms powered by recurrent neural networks(RNN). You’ll master IoT applications for indoor localization, predictive maintenance, and locating equipment in a large hospital using autoencoders, DeepFi, and LSTM networks. Furthermore, you’ll learn IoT application development for healthcare with IoT security enhanced. By the end of this book, you will have sufficient knowledge need to use deep learning efficiently to power your IoT-based applications for smarter decision making. |
Features |
|
商品描述(中文翻譯)
收穫
- 熟悉不同的神經網絡架構及其在物聯網中的適用性
- 了解深度學習如何提高物聯網解決方案的預測能力
- 捕獲並處理流數據以進行預測性維護
- 選擇最佳的圖像識別和室內定位框架
- 分析語音數據以進行物聯網應用中的語音識別
- 為醫療保健領域開發基於深度學習的物聯網解決方案
- 增強物聯網解決方案的安全性
- 可視化分析數據以揭示洞察並進行準確的預測
關於
人工智能正在快速發展,這是由神經網絡(NN)和深度學習(DL)的進步推動的。隨著對智慧城市、智慧醫療和工業物聯網(IoT)的投資增加,物聯網的商業化將很快達到高峰,這將產生大量由物聯網設備生成的數據需要大規模處理。
《深度學習實戰:物聯網》將提供更深入的物聯網數據洞察,首先介紹DL如何使物聯網應用更智能。然後介紹如何使用TensorFlow、Keras和Chainer構建深度架構。
您將學習如何訓練卷積神經網絡(CNN)開發基於圖像的道路故障檢測和智能垃圾分類應用,然後實現由循環神經網絡(RNN)驅動的語音啟動智能照明控制和家庭訪問機制。
您將掌握室內定位、預測性維護和使用自編碼器、DeepFi和LSTM網絡在大型醫院中定位設備的物聯網應用。此外,您還將學習如何增強醫療保健領域的物聯網應用的安全性。
通過閱讀本書,您將獲得足夠的知識,能夠有效地使用深度學習來提升基於物聯網的應用,以實現更智能的決策。
特點
- 了解深度學習如何在物聯網中實現快速準確的分析
- 使用TensorFlow和Chainer構建智能語音和語音識別應用
- 分析物聯網數據以進行自動化決策和高效預測