Machine Learning for Cybersecurity Cookbook
暫譯: 網路安全機器學習食譜

Tsukerman, Emmanuel

  • 出版商: Packt Publishing
  • 出版日期: 2019-11-22
  • 售價: $2,000
  • 貴賓價: 9.5$1,900
  • 語言: 英文
  • 頁數: 346
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1789614678
  • ISBN-13: 9781789614671
  • 相關分類: Machine Learning資訊安全
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers.

You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models.

By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach.

  • Manage data of varying complexity to protect your system using the Python ecosystem
  • Apply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineering
  • Automate your daily workflow by addressing various security challenges using the recipes covered in the book

商品描述(中文翻譯)




當今的組織面臨著重大的網路安全威脅,從惡意網址到憑證重用,擁有強健的安全系統可以帶來巨大的差異。透過這本書,您將學習如何使用 Python 函式庫,如 TensorFlow 和 scikit-learn,來實現最新的人工智慧 (AI) 技術並處理網路安全研究人員所面臨的挑戰。

您將首先探索各種機器學習 (ML) 技術以及設置安全實驗室環境的技巧。接下來,您將實現關鍵的 ML 演算法,如聚類、梯度提升、隨機森林和 XGBoost。本書將指導您構建惡意軟體的分類器和特徵,並在真實樣本上進行訓練和測試。隨著進展,您將建立自我學習的系統,以處理網路安全任務,例如識別惡意網址、垃圾郵件檢測、入侵檢測、網路保護以及追蹤用戶和進程行為。之後,您將應用生成對抗網路 (GANs) 和自編碼器於進階安全任務。最後,您將深入了解安全和私密的 AI,以保護消費者使用您的 ML 模型時的隱私權。

在本書結束時,您將具備解決網路安全領域中現實問題所需的技能,並採用基於食譜的方法。


  • 管理不同複雜度的數據,以使用 Python 生態系統保護您的系統

  • 將 ML 應用於滲透測試、惡意軟體、數據隱私、入侵檢測系統 (IDS) 和社會工程

  • 通過解決本書中涵蓋的各種安全挑戰,自動化您的日常工作流程