Hands-On Ensemble Learning with Python
暫譯: 使用 Python 實作集成學習
Kyriakides, George, G. Margaritis, Konstantinos
- 出版商: Packt Publishing
- 出版日期: 2019-07-24
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 298
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789612853
- ISBN-13: 9781789612851
-
相關分類:
Python、程式語言
-
相關翻譯:
集成式學習:Python 實踐!整合全部技術,打造最強模型 (Hands-On Ensemble Learning with Python: Build highly optimized ensemble machine learning models using scikit-learn and Keras) (繁中版)
商品描述
Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model.
With its hands-on approach, you'll not only get up to speed with the basic theory but also the application of different ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. In addition to this, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models.
By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.
商品描述(中文翻譯)
集成學習是一種將兩個或更多相似或不相似的機器學習演算法結合起來的技術,以創建一個具有更強預測能力的模型。本書將展示如何使用各種弱演算法來構建一個強大的預測模型。
本書採用實作導向的方法,您不僅能夠掌握基本理論,還能學習不同集成學習技術的應用。通過範例和真實世界的數據集,您將能夠產生更好的機器學習模型,以解決監督式學習問題,例如分類和回歸。此外,您還將利用集成學習技術,例如聚類,來生成無監督的機器學習模型。隨著進展,各章將涵蓋在實務中廣泛使用的不同機器學習演算法,以進行預測和分類。您甚至將學會如何使用 Python 函式庫,如 scikit-learn 和 Keras,來實現不同的集成模型。
在本書結束時,您將對集成學習有深入的了解,並具備理解哪種集成方法適用於哪個問題的技能,並能在真實世界的情境中成功實施它們。