Python Data Science Essentials - Third Edition: A beginner's guide covering essential data science principles, tools, and techniques
暫譯: Python 數據科學基礎 - 第三版:涵蓋基本數據科學原則、工具和技術的入門指南
Alberto Boschetti, Luca Massaron
- 出版商: Packt Publishing
- 出版日期: 2018-09-28
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 472
- 裝訂: Paperback
- ISBN: 178953786X
- ISBN-13: 9781789537864
-
相關分類:
Python、程式語言、Data Science
-
相關翻譯:
數據科學導論:Python語言(原書第3版) (簡中版)
商品描述
Gain useful insights from your data using popular data science tools
Key Features
- A one-stop guide to Python libraries such as pandas and NumPy
- Comprehensive coverage of data science operations such as data cleaning and data manipulation
- Choose scalable learning algorithms for your data science tasks
Book Description
Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book brings modern insight into the core of Python, including the latest versions of the Jupyter notebook, NumPy, pandas, and scikit-learn.
This book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques across data collection, data munging and analysis, visualization, and reporting activities. You will also understand advanced data science topics such as machine learning landscapes, distributed computing, building predictive models, and natural language processing. Furthermore, you'll also be introduced to deep learning and gradient boosting solutions such as xgboost, lightgbm, and catboost.
By the end of the book, you will have gained a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users.
What you will learn
- Set up your data science toolbox on Windows, Mac, and Linux
- Use the core machine learning methods offered by the scikit-learn library
- Manipulate, fix, and explore data to solve data science problems
- Learn advanced explorative and manipulative techniques to solve data operations
- Optimize your machine learning models for optimized performance
- Explore and cluster graphs, taking advantage of interconnections and links in your data
Who This Book Is For
If you're a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.
商品描述(中文翻譯)
利用流行的數據科學工具從您的數據中獲取有用的見解
主要特點
- 一本關於 Python 函式庫(如 pandas 和 NumPy)的全方位指南
- 全面涵蓋數據科學操作,如數據清理和數據處理
- 為您的數據科學任務選擇可擴展的學習算法
書籍描述
最新版本的《Python 數據科學基礎》經過全面擴展和升級,將幫助您使用最常見的 Python 函式庫在數據科學操作中取得成功。本書為 Python 的核心提供了現代見解,包括 Jupyter notebook、NumPy、pandas 和 scikit-learn 的最新版本。
本書涵蓋詳細的範例和大型混合數據集,幫助您掌握數據收集、數據處理和分析、可視化及報告活動中的基本統計技術。您還將了解高級數據科學主題,如機器學習的範疇、分散式計算、構建預測模型和自然語言處理。此外,您還將接觸到深度學習和梯度提升解決方案,如 xgboost、lightgbm 和 catboost。
在本書結束時,您將對主要的機器學習算法、圖形分析技術以及所有可視化和部署工具有全面的了解,這些工具使您能夠更輕鬆地向數據科學專家和商業用戶展示您的結果。
您將學到什麼
- 在 Windows、Mac 和 Linux 上設置您的數據科學工具箱
- 使用 scikit-learn 函式庫提供的核心機器學習方法
- 操作、修正和探索數據以解決數據科學問題
- 學習高級探索性和操作性技術以解決數據操作
- 優化您的機器學習模型以獲得最佳性能
- 探索和聚類圖形,利用數據中的互連和鏈接
本書適合誰
如果您是數據科學新手、數據分析師或數據工程師,本書將幫助您準備好應對現實世界的數據科學問題,無需浪費時間。基本的概率/統計知識和 Python 編碼經驗將幫助您理解本書所涵蓋的概念。