Data Science with SQL Server Quick Start Guide: Integrate SQL Server with data science

Dejan Sarka

  • 出版商: Packt Publishing
  • 出版日期: 2018-08-31
  • 售價: $1,580
  • 貴賓價: 9.5$1,501
  • 語言: 英文
  • 頁數: 206
  • 裝訂: Paperback
  • ISBN: 1789537126
  • ISBN-13: 9781789537123
  • 相關分類: MSSQLSQLData Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Get unique insights from your data by combining the power of SQL Server, R and Python

Key Features

  • Use the features of SQL Server 2017 to implement the data science project life cycle
  • Leverage the power of R and Python to design and develop efficient data models
  • find unique insights from your data with powerful techniques for data preprocessing and analysis

Book Description

SQL Server only started to fully support data science with its two most recent editions. If you are a professional from both worlds, SQL Server and data science, and interested in using SQL Server and Machine Learning (ML) Services for your projects, then this is the ideal book for you.

This book is the ideal introduction to data science with Microsoft SQL Server and In-Database ML Services. It covers all stages of a data science project, from businessand data understanding,through data overview, data preparation, modeling and using algorithms, model evaluation, and deployment.

You will learn to use the engines and languages that come with SQL Server, including ML Services with R and Python languages and Transact-SQL. You will also learn how to choose which algorithm to use for which task, and learn the working of each algorithm.

What you will learn

  • Use the popular programming languages,T-SQL, R, and Python, for data science
  • Understand your data with queries and introductory statistics
  • Create and enhance the datasets for ML
  • Visualize and analyze data using basic and advanced graphs
  • Explore ML using unsupervised and supervised models
  • Deploy models in SQL Server and perform predictions

Who this book is for

SQL Server professionals who want to start with data science, and data scientists who would like to start using SQL Server in their projects will find this book to be useful. Prior exposure to SQL Server will be helpful.

Table of Contents

  1. Writing Queries with T-SQL
  2. Introducing R
  3. Getting Familiar with Python
  4. Data Overview
  5. Data Preparation
  6. Intermediate Statistics and Graphs
  7. Unsupervised Machine Learning
  8. Supervised Machine Learning

商品描述(中文翻譯)

從結合 SQL Server、R 和 Python 的強大功能中獲得獨特的數據洞察力

主要特點:
- 使用 SQL Server 2017 的功能來實施數據科學項目生命週期
- 利用 R 和 Python 的能力來設計和開發高效的數據模型
- 使用強大的數據預處理和分析技術從數據中找到獨特的洞察力

書籍描述:
SQL Server 在其最近的兩個版本中才開始完全支援數據科學。如果您同時是 SQL Server 和數據科學領域的專業人士,並且有興趣在項目中使用 SQL Server 和機器學習(ML)服務,那麼這本書是您的理想選擇。

這本書是使用 Microsoft SQL Server 和 In-Database ML Services 進行數據科學的理想入門書籍。它涵蓋了數據科學項目的所有階段,從業務和數據理解,到數據概述、數據準備、建模和使用算法、模型評估以及部署。

您將學習使用隨 SQL Server 附帶的引擎和語言,包括 R 和 Python 語言以及 Transact-SQL。您還將學習如何選擇哪種算法用於哪種任務,並了解每個算法的工作原理。

您將學到的內容:
- 使用流行的編程語言 T-SQL、R 和 Python 進行數據科學
- 通過查詢和入門統計學來了解您的數據
- 創建和增強用於機器學習的數據集
- 使用基本和高級圖形來可視化和分析數據
- 使用無監督和監督模型探索機器學習
- 在 SQL Server 中部署模型並進行預測

本書適合對象:
- 想要開始進行數據科學的 SQL Server 專業人士
- 希望在項目中開始使用 SQL Server 的數據科學家
- 具有 SQL Server 的先前經驗將會有所幫助

目錄:
1. 使用 T-SQL 編寫查詢
2. 介紹 R
3. 熟悉 Python
4. 數據概述
5. 數據準備
6. 中級統計和圖形
7. 無監督機器學習
8. 監督機器學習