Beginning Data Analysis with Python and Jupyter: Use Powerful Industry-Standard Tools to Unlock New, Actionable Insight from Your Existing Data
暫譯: 使用 Python 和 Jupyter 開始數據分析:利用強大的行業標準工具從現有數據中挖掘新的可行見解
Alex Galea
- 出版商: Packt Publishing
- 出版日期: 2018-05-29
- 售價: $910
- 貴賓價: 9.5 折 $865
- 語言: 英文
- 頁數: 194
- 裝訂: Paperback
- ISBN: 1789532027
- ISBN-13: 9781789532029
-
相關分類:
Python、程式語言、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction.
Key Features
- Get up and running with the Jupyter ecosystem and some example datasets
- Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests
- Discover how you can use web scraping to gather and parse your own bespoke datasets
Book Description
Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context.
What you will learn
- Identify potential areas of investigation and perform exploratory data analysis
- Plan a machine learning classification strategy and train classification models
- Use validation curves and dimensionality reduction to tune and enhance your models
- Scrape tabular data from web pages and transform it into Pandas DataFrames
- Create interactive, web-friendly visualizations to clearly communicate your findings
Who This Book Is For
This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
Table of Contents
- Jupyter Fundamentals
- Data Cleaning and Advanced Machine Learning
- Web Scraping and Interactive Visualizations
商品描述(中文翻譯)
開始學習資料科學不必是一場艱苦的戰鬥。這本逐步指南非常適合對 Python 有基本了解的初學者,並提供快速且節奏明快的入門介紹。
主要特點
- 快速上手 Jupyter 生態系統及一些範例數據集
- 學習關鍵的機器學習概念,如支持向量機 (SVM)、K 最近鄰 (KNN) 分類器和隨機森林 (Random Forests)
- 探索如何使用網頁爬蟲來收集和解析您自己的定制數據集
書籍描述
在這個實作導向的 Python 和 Jupyter 課程中,掌握進入資料科學所需的技能。您將學習 Anaconda 發行版中一些最常用的庫,然後使用真實數據集探索機器學習模型,以便獲得您在現實世界中所需的技能和經驗。我們將最後展示如何輕鬆地從開放網路中爬取和收集自己的數據,讓您能在可行的情境中應用您的新技能。
您將學到的內容
- 確定潛在的調查領域並執行探索性數據分析
- 計劃機器學習分類策略並訓練分類模型
- 使用驗證曲線和降維技術來調整和增強您的模型
- 從網頁中爬取表格數據並將其轉換為 Pandas DataFrames
- 創建互動式、網頁友好的可視化,以清晰地傳達您的發現
本書適合誰
考慮到資料科學日益普及和可及性,本書非常適合各行各業的專業人士。您需要具備一些 Python 的先前經驗,任何與 Pandas、Matplotlib 和 Pandas 等庫的先前工作都將為您提供有用的起步。
目錄
1. Jupyter 基礎
2. 數據清理與進階機器學習
3. 網頁爬蟲與互動式可視化