Learning Jupyter 5: Explore interactive computing using Python, Java, JavaScript, R, Julia, and JupyterLab, 2nd Edition
暫譯: 學習 Jupyter 5:使用 Python、Java、JavaScript、R、Julia 和 JupyterLab 探索互動式計算(第二版)

Dan Toomey

買這商品的人也買了...

相關主題

商品描述

Create and share livecode, equations, visualizations, and explanatory text, in both a single document and a web browser with Jupyter

Key Features

  • Learn how to use Jupyter 5.x features such as cell tagging and attractive table styles
  • Leverage big data tools and datasets with different Python packages
  • Explore multiple-user Jupyter Notebook servers

Book Description

The Jupyter Notebook allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, and machine learning. Learning Jupyter 5 will help you get to grips with interactive computing using real-world examples.

The book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next, you will learn to integrate the Jupyter system with different programming languages such as R, Python, Java, JavaScript, and Julia, and explore various versions and packages that are compatible with the Notebook system. Moving ahead, you will master interactive widgets and namespaces and work with Jupyter in a multi-user mode.

By the end of this book, you will have used Jupyter with a big dataset and be able to apply all the functionalities you've explored throughout the book. You will also have learned all about the Jupyter Notebook and be able to start performing data transformation, numerical simulation, and data visualization.

What you will learn

  • Install and run the Jupyter Notebook system on your machine
  • Implement programming languages such as R, Python, Julia, and JavaScript with the Jupyter Notebook
  • Use interactive widgets to manipulate and visualize data in real time
  • Start sharing your Notebook with colleagues
  • Invite your colleagues to work with you on the same Notebook
  • Organize your Notebook using Jupyter namespaces
  • Access big data in Jupyter for dealing with large datasets using Spark

Who this book is for

Learning Jupyter 5 is for developers, data scientists, machine learning users, and anyone working on data analysis or data science projects across different teams. Data science professionals will also find this book useful for performing technical and scientific computing collaboratively.

Table of Contents

  1. Introduction to Jupyter
  2. Jupyter Python Scripting
  3. Jupyter R Scripting
  4. Jupyter Julia Scripting
  5. Jupyter Java Coding
  6. Jupyter JavaScript Coding
  7. Jupyter Scala
  8. Jupyter and Big Data
  9. Interactive Widgets
  10. Sharing and Coverting Jupyter Notebook
  11. Multiuser Jupyter Notebook
  12. What's Next?

商品描述(中文翻譯)

使用 Jupyter 創建和分享即時代碼、方程式、可視化和解釋性文本,無論是在單一文檔還是網頁瀏覽器中

主要特點


  • 學習如何使用 Jupyter 5.x 的功能,例如單元標籤和吸引人的表格樣式
  • 利用不同 Python 套件的巨量資料工具和數據集
  • 探索多用戶 Jupyter Notebook 伺服器

書籍描述

Jupyter Notebook 允許您創建和分享包含即時代碼、方程式、可視化和解釋性文本的文檔。Jupyter Notebook 系統廣泛應用於數據清理和轉換、數值模擬、統計建模和機器學習等領域。學習 Jupyter 5 將幫助您掌握使用真實世界範例的互動計算。

本書首先詳細介紹 Jupyter Notebook 系統及其在不同環境中的安裝。接下來,您將學習如何將 Jupyter 系統與 R、Python、Java、JavaScript 和 Julia 等不同編程語言整合,並探索與 Notebook 系統相容的各種版本和套件。隨著進展,您將掌握互動小部件和命名空間,並在多用戶模式下使用 Jupyter。

在本書結束時,您將能夠使用 Jupyter 處理大型數據集,並能夠應用您在整本書中探索的所有功能。您還將學習有關 Jupyter Notebook 的所有知識,並能開始執行數據轉換、數值模擬和數據可視化。

您將學到什麼


  • 在您的機器上安裝和運行 Jupyter Notebook 系統
  • 使用 Jupyter Notebook 實現 R、Python、Julia 和 JavaScript 等編程語言
  • 使用互動小部件實時操作和可視化數據
  • 開始與同事分享您的 Notebook
  • 邀請同事與您在同一 Notebook 上合作
  • 使用 Jupyter 命名空間組織您的 Notebook
  • 在 Jupyter 中訪問巨量資料,以使用 Spark 處理大型數據集

本書適合誰

學習 Jupyter 5 適合開發人員、數據科學家、機器學習使用者以及在不同團隊中從事數據分析或數據科學項目的人士。數據科學專業人士也會發現本書對於協作執行技術和科學計算非常有用。

目錄


  1. Jupyter 簡介
  2. Jupyter Python 腳本
  3. Jupyter R 腳本
  4. Jupyter Julia 腳本
  5. Jupyter Java 編碼
  6. Jupyter JavaScript 編碼
  7. Jupyter Scala
  8. Jupyter 與巨量資料
  9. 互動小部件
  10. 分享和轉換 Jupyter Notebook
  11. 多用戶 Jupyter Notebook
  12. 接下來是什麼?