Practical Data Analysis using Jupyter Notebook
暫譯: 使用 Jupyter Notebook 的實用數據分析

Marc Wintjen , Andrew Vlahutin

  • 出版商: Packt Publishing
  • 出版日期: 2020-06-19
  • 定價: $1,360
  • 售價: 9.0$1,224
  • 語言: 英文
  • 頁數: 322
  • 裝訂: Paperback
  • ISBN: 1838826033
  • ISBN-13: 9781838826031
  • 相關分類: Data Science
  • 立即出貨 (庫存 < 3)

相關主題

商品描述

Key Features

  • Find out how to use Python code to extract insights from data using real-world examples
  • Work with structured data and free text sources to answer questions and add value using data
  • Perform data analysis from scratch with the help of clear explanations for cleaning, transforming, and visualizing data

Book Description

Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data.

After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps.

Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries.

By the end of this book, you'll have gained the practical skills you need to analyze data with confidence.

What you will learn

  • Understand the importance of data literacy and how to communicate effectively using data
  • Find out how to use Python packages such as NumPy, pandas, Matplotlib, and the Natural Language Toolkit (NLTK) for data analysis
  • Wrangle data and create DataFrames using pandas
  • Produce charts and data visualizations using time-series datasets
  • Discover relationships and how to join data together using SQL
  • Use NLP techniques to work with unstructured data to create sentiment analysis models
  • Discover patterns in real-world datasets that provide accurate insights

Who this book is for

This book is for aspiring data analysts and data scientists looking for hands-on tutorials and real-world examples to understand data analysis concepts using SQL, Python, and Jupyter Notebook. Anyone looking to evolve their skills to become data-driven personally and professionally will also find this book useful. No prior knowledge of data analysis or programming is required to get started with this book.

商品描述(中文翻譯)

**主要特點**

- 瞭解如何使用 Python 代碼從數據中提取見解,並通過真實案例進行說明
- 使用結構化數據和自由文本來源來回答問題並增加數據的價值
- 從零開始進行數據分析,並通過清晰的解釋學習數據的清理、轉換和可視化

**書籍描述**

數據素養是閱讀、分析、處理和使用數據進行論證的能力。數據分析是清理和建模數據以發現有用信息的過程。本書通過分享經過驗證的技術和實踐範例,將這兩個概念結合在一起,讓您學會如何有效地使用數據進行溝通。

在介紹使用 Jupyter Notebook 和 Python 的數據分析基礎知識後,本書將帶您了解數據的基本原理。本指南充滿了實用的範例,將教您如何清理、處理、分析和可視化數據,以獲得有用的見解,並通過易於遵循的步驟發現如何使用數據回答問題。

後面的章節將教您如何使用圖表(如直方圖和散點圖)進行數據故事講述。隨著學習的深入,您將了解如何使用自然語言處理(NLP)技術處理非結構化數據以進行情感分析。您所獲得的所有知識將幫助您使用真實案例發現數據中的關鍵模式和趨勢。此外,您還將學習如何處理不同複雜度的數據,以使用現代 Python 庫進行高效的數據分析。

到本書結束時,您將獲得自信分析數據所需的實用技能。

**您將學到的內容**

- 理解數據素養的重要性以及如何有效地使用數據進行溝通
- 瞭解如何使用 Python 套件,如 NumPy、pandas、Matplotlib 和自然語言工具包(NLTK)進行數據分析
- 使用 pandas 處理數據並創建 DataFrame
- 使用時間序列數據集生成圖表和數據可視化
- 發現關係並使用 SQL 將數據連接在一起
- 使用 NLP 技術處理非結構化數據以創建情感分析模型
- 在真實世界數據集中發現提供準確見解的模式

**本書適合誰**

本書適合有志成為數據分析師和數據科學家的讀者,尋找實踐教程和真實案例以理解使用 SQL、Python 和 Jupyter Notebook 的數據分析概念。任何希望在個人和專業上發展數據驅動技能的人也會發現本書有用。開始閱讀本書不需要任何數據分析或編程的先前知識。

作者簡介

Marc Wintjen is a Risk Analytics Architect at Bloomberg LP with over 20 years of professional experience. An evangelist for data literacy, he's known as the Data Mensch by helping others make data driven decisions. His passion for all things data has evolved from SQL and Data Warehousing to Big Data Analytics and Data Visualizations.

作者簡介(中文翻譯)

Marc Wintjen 是 Bloomberg LP 的風險分析架構師,擁有超過 20 年的專業經驗。他是數據素養的倡導者,因幫助他人做出數據驅動的決策而被稱為「數據人」(Data Mensch)。他對數據的熱情從 SQL 和數據倉儲演變到大數據分析和數據可視化。

目錄大綱

  1. Fundamentals of data analysis
  2. Overview of Python and Installation of Jupyter notebook
  3. Getting Started with NumPy
  4. Creating your first Pandas DataFrame
  5. Gathering and Loading Data in Python
  6. Visualizing and working with time series data
  7. Exploring Cleaning, Refining and Blending Datasets
  8. Understanding Joins, Relationships and Data Aggregates
  9. Plotting, Visualization and Storytelling
  10. Exploring Text Data and Unstructured Data
  11. Practical Sentiment Analysis
  12. Discovering Patterns in Data and providing insights

目錄大綱(中文翻譯)


  1. Fundamentals of data analysis

  2. Overview of Python and Installation of Jupyter notebook

  3. Getting Started with NumPy

  4. Creating your first Pandas DataFrame

  5. Gathering and Loading Data in Python

  6. Visualizing and working with time series data

  7. Exploring Cleaning, Refining and Blending Datasets

  8. Understanding Joins, Relationships and Data Aggregates

  9. Plotting, Visualization and Storytelling

  10. Exploring Text Data and Unstructured Data

  11. Practical Sentiment Analysis

  12. Discovering Patterns in Data and providing insights