Advanced TypeScript Programming Projects
暫譯: 進階 TypeScript 程式設計專案

O'Hanlon, Peter

  • 出版商: Packt Publishing
  • 出版日期: 2019-07-26
  • 定價: $1,380
  • 售價: 8.0$1,104
  • 語言: 英文
  • 頁數: 416
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1789133041
  • ISBN-13: 9781789133042
  • 相關分類: JavaScriptTypeScript
  • 相關翻譯: TypeScript 項目開發實戰 (簡中版)
  • 立即出貨 (庫存=1)

商品描述

Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model.

 

With its hands-on approach, you'll not only get up to speed with the basic theory but also the application of different ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. In addition to this, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models.

 

By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.

商品描述(中文翻譯)

集成學習是一種將兩個或更多相似或不相似的機器學習演算法結合起來的技術,以創建一個具有更強預測能力的模型。本書將展示如何使用各種弱演算法來構建一個強大的預測模型。

本書採用實作導向的方法,您不僅能夠掌握基本理論,還能學習不同集成學習技術的應用。通過範例和真實世界的數據集,您將能夠生成更好的機器學習模型,以解決監督式學習問題,如分類和回歸。此外,您還將利用集成學習技術,如聚類,來生成非監督式機器學習模型。隨著進展,各章將涵蓋在實務中廣泛使用的不同機器學習演算法,以進行預測和分類。您甚至將學會如何使用 Python 函式庫,如 scikit-learn 和 Keras,來實現不同的集成模型。

在本書結束時,您將對集成學習有深入的了解,並具備必要的技能,以理解哪種集成方法適用於哪個問題,並成功地在現實世界中實施它們。

最後瀏覽商品 (20)