Hands-On Time Series Analysis with R
暫譯: 使用 R 進行實作時間序列分析
Krispin, Rami
- 出版商: Packt Publishing
- 出版日期: 2019-05-31
- 售價: $1,670
- 貴賓價: 9.5 折 $1,587
- 語言: 英文
- 頁數: 448
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1788629159
- ISBN-13: 9781788629157
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$880$695 -
$1,840$1,748 -
$1,880$1,786 -
$500$390 -
$1,670$1,587 -
$1,570$1,492
商品描述
Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series.
This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package.
By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods.
商品描述(中文翻譯)
時間序列分析是從時間序列數據中提取有意義的見解並揭示模式的藝術,這一過程使用統計和數據視覺化的方法。這些見解和模式可以用來探索過去事件並預測系列中的未來值。
本書探討了使用 R 進行時間序列分析的基本知識,並為您建立預測模型所需的基礎。您將學習如何預處理原始時間序列數據,並使用如 stats、lubridate、xts 和 zoo 等套件清理和操作數據。您將使用描述性統計和 R 中的豐富數據視覺化工具(如 TSstudio、plotly 和 ggplot2 套件)來分析數據並從中提取有意義的信息。本書的後半部分深入探討了傳統的預測模型,如時間序列線性回歸、指數平滑(Holt、Holt-Winter 等)和自回歸整合移動平均(ARIMA)模型,這些模型使用 stats 和 forecast 套件進行分析。您還將涵蓋使用 h2o 套件的機器學習算法(如隨機森林和梯度提升機)進行的高級時間序列回歸模型。
在本書結束時,您將具備探索數據、識別模式以及使用各種傳統和機器學習方法建立預測模型所需的技能。