Statistical Application Development with R and Python

Prabhanjan Narayanachar Tattar

  • 出版商: Packt Publishing
  • 出版日期: 2017-08-30
  • 售價: $2,170
  • 貴賓價: 9.5$2,062
  • 語言: 英文
  • 頁數: 432
  • 裝訂: Paperback
  • ISBN: 1788621190
  • ISBN-13: 9781788621199
  • 相關分類: Python程式語言R 語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Software Implementation Illustrated with R and Python

About This Book

  • Learn the nature of data through software which takes the preliminary concepts right away using R and Python.
  • Understand data modeling and visualization to perform efficient statistical analysis with this guide.
  • Get well versed with techniques such as regression, clustering, classification, support vector machines and much more to learn the fundamentals of modern statistics.

Who This Book Is For

If you want to have a brief understanding of the nature of data and perform advanced statistical analysis using both R and Python, then this book is what you need. No prior knowledge is required. Aspiring data scientist, R users trying to learn Python and vice versa

What You Will Learn

  • Learn the nature of data through software with preliminary concepts right away in R
  • Read data from various sources and export the R output to other software
  • Perform effective data visualization with the nature of variables and rich alternative options
  • Do exploratory data analysis for useful first sight understanding building up to the right attitude towards effective inference
  • Learn statistical inference through simulation combining the classical inference and modern computational power
  • Delve deep into regression models such as linear and logistic for continuous and discrete regressands for forming the fundamentals of modern statistics
  • Introduce yourself to CART – a machine learning tool which is very useful when the data has an intrinsic nonlinearity

In Detail

Statistical Analysis involves collecting and examining data to describe the nature of data that needs to be analyzed. It helps you explore the relation of data and build models to make better decisions.

This book explores statistical concepts along with R and Python, which are well integrated from the word go. Almost every concept has an R code going with it which exemplifies the strength of R and applications. The R code and programs have been further strengthened with equivalent Python programs. Thus, you will first understand the data characteristics, descriptive statistics and the exploratory attitude, which will give you firm footing of data analysis. Statistical inference will complete the technical footing of statistical methods. Regression, linear, logistic modeling, and CART, builds the essential toolkit. This will help you complete complex problems in the real world.

You will begin with a brief understanding of the nature of data and end with modern and advanced statistical models like CART. Every step is taken with DATA and R code, and further enhanced by Python.

The data analysis journey begins with exploratory analysis, which is more than simple, descriptive, data summaries. You will then apply linear regression modeling, and end with logistic regression, CART, and spatial statistics.

By the end of this book you will be able to apply your statistical learning in major domains at work or in your projects.

Style and approach

Developing better and smarter ways to analyze data. Making better decisions/future predictions. Learn how to explore, visualize and perform statistical analysis. Better and efficient statistical and computational methods. Perform practical examples to master your learning

商品描述(中文翻譯)

**軟體實作:以 R 和 Python 為例**

## 本書介紹

- 透過 R 和 Python 的軟體學習數據的本質,立即掌握基本概念。
- 理解數據建模和視覺化,以便使用本指南進行有效的統計分析。
- 熟悉回歸、聚類、分類、支持向量機等技術,學習現代統計的基本原理。

## 本書適合誰

如果您想簡要了解數據的本質並使用 R 和 Python 進行高級統計分析,那麼這本書正是您所需。無需任何先前知識。適合有志成為數據科學家的人、希望學習 Python 的 R 使用者,以及希望學習 R 的 Python 使用者。

## 您將學到什麼

- 透過 R 立即學習數據的本質及基本概念。
- 從各種來源讀取數據並將 R 輸出匯出到其他軟體。
- 針對變數的本質和豐富的替代選項進行有效的數據視覺化。
- 進行探索性數據分析,以便對有效推論建立正確的態度。
- 通過模擬學習統計推論,結合經典推論和現代計算能力。
- 深入研究回歸模型,如線性和邏輯回歸,為現代統計奠定基礎。
- 介紹 CART——一種在數據具有內在非線性時非常有用的機器學習工具。

## 詳細內容

統計分析涉及收集和檢查數據,以描述需要分析的數據本質。它幫助您探索數據之間的關係並建立模型,以便做出更好的決策。

本書探討統計概念,並結合 R 和 Python,從一開始就進行良好的整合。幾乎每個概念都有相應的 R 代碼,展示了 R 的優勢和應用。R 代碼和程序進一步增強了相應的 Python 程序。因此,您將首先理解數據特徵、描述性統計和探索性態度,這將為數據分析奠定堅實的基礎。統計推論將完成統計方法的技術基礎。回歸、線性、邏輯建模和 CART,構建了必要的工具包。這將幫助您解決現實世界中的複雜問題。

您將從簡要了解數據的本質開始,最終掌握現代和高級統計模型,如 CART。每一步都以數據和 R 代碼為基礎,並進一步通過 Python 增強。

數據分析之旅始於探索性分析,這不僅僅是簡單的描述性數據摘要。然後,您將應用線性回歸建模,並以邏輯回歸、CART 和空間統計結束。

在本書結束時,您將能夠在工作或項目中的主要領域應用您的統計學習。

## 風格與方法

開發更好、更智能的數據分析方法。做出更好的決策/未來預測。學習如何探索、視覺化和執行統計分析。更好且高效的統計和計算方法。進行實際範例以掌握您的學習。