Hands-On Big Data Modeling: Effective database design techniques for data architects and business intelligence professionals
暫譯: 實戰大數據建模:數據架構師與商業智慧專業人士的有效資料庫設計技術

James Lee, Tao Wei, Suresh Kumar Mukhiya

  • 出版商: Packt Publishing
  • 出版日期: 2018-11-30
  • 售價: $1,830
  • 貴賓價: 9.5$1,739
  • 語言: 英文
  • 頁數: 306
  • 裝訂: Paperback
  • ISBN: 1788620909
  • ISBN-13: 9781788620901
  • 相關分類: 大數據 Big-data資料庫
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Solve all big data problems by learning how to create efficient data models

Key Features

  • Create effective models that get the most out of big data
  • Apply your knowledge to datasets from Twitter and weather data to learn big data
  • Tackle different data modeling challenges with expert techniques presented in this book

Book Description

Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements.

To start with, you'll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you'll work with structured and semi-structured data with the help of real-life examples. Once you've got to grips with the basics, you'll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You'll also learn to create graph data models and explore data modeling with streaming data using real-world datasets.

By the end of this book, you'll be able to design and develop efficient data models for varying data sizes easily and efficiently.

What you will learn

  • Get insights into big data and discover various data models
  • Explore conceptual, logical, and big data models
  • Understand how to model data containing different file types
  • Run through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modeling
  • Create data models such as Graph Data and Vector Space
  • Model structured and unstructured data using Python and R

Who this book is for

This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.

Table of Contents

  1. Introduction to Big Data and Data Management
  2. Data Modeling and Data Management platforms for Big Data
  3. Defining Data Model
  4. Categorizing Data Model
  5. Structures of Data Model
  6. Modeling Structured Data
  7. Modeling with Unstructured Data
  8. Modeling with Steaming Data
  9. Streaming Sensors Data
  10. Concept and Approaches of Big Data Management
  11. DBMS to BDMS
  12. Big Data Management Services and Vendors
  13. Modeling Twitter Feeds using Python
  14. Modeling Weather Data Points with Python
  15. Modeling IMDB Data Points with Python

商品描述(中文翻譯)

透過學習如何創建高效的數據模型來解決所有大數據問題

主要特點



  • 創建有效的模型,以充分利用大數據

  • 將您的知識應用於來自 Twitter 和天氣數據的數據集,以學習大數據

  • 使用本書中提供的專家技術應對不同的數據建模挑戰

書籍描述


數據建模和管理是所有大數據項目的核心焦點。事實上,只有當您擁有邏輯且複雜的數據模型時,數據庫才被認為是有效的。本書將幫助您在建模自己的大數據項目中發展實用技能,並改善針對特定業務需求的分析查詢性能。


首先,您將快速了解大數據,並理解大數據的不同數據建模和數據管理平台。然後,您將在真實案例的幫助下處理結構化和半結構化數據。一旦您掌握了基礎知識,您將使用 SQL Developer Data Modeler 創建包含不同文件類型(如 CSV、XML 和 JSON)的數據模型。您還將學習創建圖形數據模型,並使用真實世界數據集探索流數據的數據建模。


在本書結束時,您將能夠輕鬆高效地設計和開發適用於不同數據大小的高效數據模型。

您將學到什麼



  • 深入了解大數據並發現各種數據模型

  • 探索概念模型、邏輯模型和大數據模型

  • 理解如何建模包含不同文件類型的數據

  • 通過 Twitter、Bitcoin、IMDB 和天氣數據建模的示例進行數據建模

  • 創建圖形數據和向量空間等數據模型

  • 使用 Python 和 R 建模結構化和非結構化數據

本書適合誰


本書非常適合程序員、地質學家、生物學家以及每位處理空間數據的專業人士。如果您想學習如何處理 GIS、GPS 和遙感數據,那麼這本書適合您。具備 R 和 QGIS 的基本知識將會有所幫助。

目錄



  1. 大數據與數據管理簡介

  2. 大數據的數據建模和數據管理平台

  3. 定義數據模型

  4. 分類數據模型

  5. 數據模型的結構

  6. 建模結構化數據

  7. 使用非結構化數據建模

  8. 使用流數據建模

  9. 流傳感器數據

  10. 大數據管理的概念和方法

  11. DBMS 到 BDMS

  12. 大數據管理服務和供應商

  13. 使用 Python 建模 Twitter 資訊流

  14. 使用 Python 建模天氣數據點

  15. 使用 Python 建模 IMDB 數據點