R Deep Learning Projects: Master the techniques to train and deploy neural networks in R
暫譯: R 深度學習專案:掌握在 R 中訓練和部署神經網絡的技術
Yuxi (Hayden) Liu, Pablo Maldonado
- 出版商: Packt Publishing
- 出版日期: 2018-02-23
- 定價: $1,200
- 售價: 8.0 折 $960
- 語言: 英文
- 頁數: 258
- 裝訂: Paperback
- ISBN: 1788478401
- ISBN-13: 9781788478403
-
相關分類:
R 語言、DeepLearning
立即出貨 (庫存=1)
相關主題
商品描述
5 real -world projects to help you master the concepts of deep learning
Key Features
- Master the different deep learning paradigms and build real-world projects related to Text Generation, Sentiment Analysis, Fraud Detection, and more
- Get to grips with R's impressive range of Deep Learning libraries and frameworks like deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec
- Practical projects that show you how to implement different neural networks with helpful tips, tricks and best practices
Book Description
R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is one of the popularly used languages for deep learning. Deep Learning, as we all know is one of the trending topics today - and is finding practical applications in a lot of domains.
This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll see how to train effective neural networks in R - including convolutional neural networks, recurrent neural networks and LSTMs - and apply them in practical scenarios. The book also highlights how the neural networks can be trained using the capabilities of the GPU. You will use popular R libraries and packages such as MXNetR, H2O, deepnet and more to implement the projects.
By the end of this book, you will have a better understanding of the deep learning concepts and techniques and how to use them in a practical setting.
What You Will Learn
- Instrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec
- Apply neural networks to perform handwritten digit recognition using MXNet
- Get the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic signs classification
- Implement Credit Card Fraud Detection with Autoencoders
- Be a Maestro in reconstructing images using Variational autoencoders
- Wade through Sentiment Analysis from movie reviews
- Run from past to future and vice versa with Bidirectional Long Short-Term Memory (LSTM) networks
- Understand the applications of Autoencoder Neural Networks in Clustering and Dimensionality Reduction
Who This Book Is For
Machine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book to be a useful resource. Knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.
商品描述(中文翻譯)
**五個實際專案幫助你掌握深度學習的概念**
**主要特點**
- 精通不同的深度學習範式,並建立與文本生成、情感分析、詐騙檢測等相關的實際專案
- 熟悉 R 語言中令人印象深刻的深度學習庫和框架,如 deepnet、MXNetR、Tensorflow、H2O、Keras 和 text2vec
- 實用專案展示如何實現不同的神經網絡,並提供有用的提示、技巧和最佳實踐
**書籍描述**
R 是一種流行的程式語言,廣泛用於統計分析,並且是深度學習中常用的語言之一。眾所周知,深度學習是當今的熱門話題,並在許多領域中找到了實際應用。
本書展示了五個與深度學習熱門主題相關的實際專案的端到端實現,例如手寫數字識別、交通信號燈檢測、詐騙檢測、文本生成和情感分析。你將學會如何在 R 中訓練有效的神經網絡,包括卷積神經網絡、遞迴神經網絡和 LSTM,並將其應用於實際場景。本書還強調如何利用 GPU 的能力來訓練神經網絡。你將使用流行的 R 庫和套件,如 MXNetR、H2O、deepnet 等來實現這些專案。
在本書結束時,你將對深度學習的概念和技術有更深入的理解,並學會如何在實際環境中使用它們。
**你將學到什麼**
- 使用 deepnet、MXNetR、Tensorflow、H2O、Keras 和 text2vec 等套件來操作深度學習模型
- 應用神經網絡進行手寫數字識別,使用 MXNet
- 熟悉 CNN 模型、神經網絡 API、Keras 和 TensorFlow 進行交通標誌分類
- 使用自編碼器實現信用卡詐騙檢測
- 成為使用變分自編碼器重建圖像的高手
- 從電影評論中進行情感分析
- 使用雙向長短期記憶(LSTM)網絡在過去與未來之間進行轉換
- 理解自編碼神經網絡在聚類和降維中的應用
**本書適合誰**
希望通過在 R 中實施實際專案來掌握深度學習的機器學習專業人士和數據科學家將會發現本書是一本有用的資源。需要具備 R 程式設計和深度學習基本概念的知識,以便充分利用本書的內容。