Deep Learning: Practical Neural Networks with Java
暫譯: 深度學習:使用 Java 的實用神經網絡

Yusuke Sugomori, Bostjan Kaluza, Fabio M. Soares, Alan M. F. Souza

  • 出版商: Packt Publishing
  • 出版日期: 2017-06-14
  • 定價: $2,680
  • 售價: 8.0$2,144
  • 語言: 英文
  • 頁數: 744
  • 裝訂: Paperback
  • ISBN: 1788470311
  • ISBN-13: 9781788470315
  • 相關分類: Java 程式語言DeepLearning
  • 立即出貨 (庫存 < 3)

  • Deep Learning: Practical Neural Networks with Java-preview-1
  • Deep Learning: Practical Neural Networks with Java-preview-2
  • Deep Learning: Practical Neural Networks with Java-preview-3
  • Deep Learning: Practical Neural Networks with Java-preview-4
  • Deep Learning: Practical Neural Networks with Java-preview-5
  • Deep Learning: Practical Neural Networks with Java-preview-6
  • Deep Learning: Practical Neural Networks with Java-preview-7
  • Deep Learning: Practical Neural Networks with Java-preview-8
  • Deep Learning: Practical Neural Networks with Java-preview-9
  • Deep Learning: Practical Neural Networks with Java-preview-10
  • Deep Learning: Practical Neural Networks with Java-preview-11
  • Deep Learning: Practical Neural Networks with Java-preview-12
  • Deep Learning: Practical Neural Networks with Java-preview-13
  • Deep Learning: Practical Neural Networks with Java-preview-14
  • Deep Learning: Practical Neural Networks with Java-preview-15
  • Deep Learning: Practical Neural Networks with Java-preview-16
  • Deep Learning: Practical Neural Networks with Java-preview-17
  • Deep Learning: Practical Neural Networks with Java-preview-18
  • Deep Learning: Practical Neural Networks with Java-preview-19
  • Deep Learning: Practical Neural Networks with Java-preview-20
  • Deep Learning: Practical Neural Networks with Java-preview-21
  • Deep Learning: Practical Neural Networks with Java-preview-22
  • Deep Learning: Practical Neural Networks with Java-preview-23
  • Deep Learning: Practical Neural Networks with Java-preview-24
  • Deep Learning: Practical Neural Networks with Java-preview-25
  • Deep Learning: Practical Neural Networks with Java-preview-26
  • Deep Learning: Practical Neural Networks with Java-preview-27
  • Deep Learning: Practical Neural Networks with Java-preview-28
Deep Learning: Practical Neural Networks with Java-preview-1

買這商品的人也買了...

相關主題

商品描述

Build and run intelligent applications by leveraging key Java machine learning libraries

About This Book

  • Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries.
  • Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications
  • This step-by-step guide will help you solve real-world problems and links neural network theory to their application

Who This Book Is For

This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life.

What You Will Learn

  • Get a practical deep dive into machine learning and deep learning algorithms
  • Explore neural networks using some of the most popular Deep Learning frameworks
  • Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms
  • Apply machine learning to fraud, anomaly, and outlier detection
  • Experiment with deep learning concepts, algorithms, and the toolbox for deep learning
  • Select and split data sets into training, test, and validation, and explore validation strategies
  • Apply the code generated in practical examples, including weather forecasting and pattern recognition

In Detail

Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work.

The course provides you with highly practical content explaining deep learning with Java, from the following Packt books:

  1. Java Deep Learning Essentials
  2. Machine Learning in Java
  3. Neural Network Programming with Java, Second Edition

Style and approach

This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application

商品描述(中文翻譯)

**利用關鍵的 Java 機器學習庫構建和運行智能應用程序**

## 本書介紹

- 制定有效的策略,使用最受歡迎的機器學習 Java 庫來解決預測建模問題。
- 通過圖表、源代碼和實際應用探索各種數據處理、機器學習和自然語言處理。
- 本逐步指南將幫助您解決現實世界中的問題,並將神經網絡理論與其應用聯繫起來。

## 本書適合誰

本課程旨在為希望深入了解深度學習的數據科學家和 Java 開發人員而設。它將幫助您快速上手,並提供成功創建、自定義和部署機器學習應用所需的技能。

## 您將學到什麼

- 深入了解機器學習和深度學習算法的實用知識。
- 使用一些最受歡迎的深度學習框架探索神經網絡。
- 深入研究深度信念網絡和堆疊去噪自編碼器算法。
- 將機器學習應用於欺詐、異常和離群點檢測。
- 實驗深度學習概念、算法和深度學習工具箱。
- 選擇並拆分數據集為訓練、測試和驗證,並探索驗證策略。
- 在實際示例中應用生成的代碼,包括天氣預測和模式識別。

## 詳細內容

機器學習應用無處不在,從自駕車、垃圾郵件檢測、文檔搜索、交易策略到語音識別。本課程從基本機器學習算法的介紹開始,帶您深入這個充滿驚人預測洞察和卓越機器智能的重要領域。本課程幫助您解決圖像處理、語音識別、語言建模中的挑戰性問題。您將學會如何檢測異常和欺詐,以及如何進行活動識別、圖像識別和文本處理。您還將處理如天氣預測、疾病診斷、客戶分析、泛化、極端機器學習等示例。到本課程結束時,您將擁有在系統上執行深度學習所需的所有知識,並能將其應用於日常工作中。

本課程提供高度實用的內容,解釋如何使用 Java 進行深度學習,內容來自以下 Packt 書籍:

1. Java 深度學習基礎
2. Java 中的機器學習
3. Java 神經網絡編程(第二版)

## 風格與方法

本課程旨在創建一條順暢的學習路徑,教您如何有效地使用 Java 進行深度學習,並與其他事實上的組件結合,以充分發揮其潛力。通過這個全面的課程,您將學習預測建模的基本知識,並進一步解決現實世界中的問題,將神經網絡理論與其應用聯繫起來。