商品描述
Practical, hands-on solutions in Python to overcome any problem in Machine Learning Key Features Master the advanced concepts, methodologies, and use cases of machine learning Build ML applications for analytics, NLP and computer vision domains Solve the most common problems in building machine learning models Book DescriptionMachine learning (ML) helps you find hidden insights from your data without the need for explicit programming. This book is your key to solving any kind of ML problem you might come across in your job. You'll encounter a set of simple to complex problems while building ML models, and you'll not only resolve these problems, but you'll also learn how to build projects based on each problem, with a practical approach and easy-to-follow examples. The book includes a wide range of applications: from analytics and NLP, to computer vision domains. Some of the applications you will be working on include stock price prediction, a recommendation engine, building a chat-bot, a facial expression recognition system, and many more. The problem examples we cover include identifying the right algorithm for your dataset and use cases, creating and labeling datasets, getting enough clean data to carry out processing, identifying outliers, overftting datasets, hyperparameter tuning, and more. Here, you'll also learn to make more timely and accurate predictions. In addition, you'll deal with more advanced use cases, such as building a gaming bot, building an extractive summarization tool for medical documents, and you'll also tackle the problems faced while building an ML model. By the end of this book, you'll be able to fine-tune your models as per your needs to deliver maximum productivity. What you will learn Select the right algorithm to derive the best solution in ML domains Perform predictive analysis effciently using ML algorithms Predict stock prices using the stock index value Perform customer analytics for an e-commerce platform Build recommendation engines for various domains Build NLP applications for the health domain Build language generation applications using different NLP techniques Build computer vision applications such as facial emotion recognition Who this book is forThis book is for the intermediate users such as machine learning engineers, data engineers, data scientists, and more, who want to solve simple to complex machine learning problems in their day-to-day work and build powerful and efficient machine learning models. A basic understanding of the machine learning concepts and some experience with Python programming is all you need to get started with this book.
商品描述(中文翻譯)
實用的 Python 解決方案,幫助克服機器學習中的各種問題
主要特點
掌握機器學習的進階概念、方法論和使用案例
為分析、自然語言處理 (NLP) 和計算機視覺領域構建 ML 應用
解決構建機器學習模型中最常見的問題
書籍描述
機器學習 (ML) 幫助您從數據中發現隱藏的見解,而無需明確的編程。本書是您解決工作中可能遇到的任何 ML 問題的關鍵。您將在構建 ML 模型的過程中遇到一系列從簡單到複雜的問題,您不僅會解決這些問題,還會學習如何基於每個問題構建項目,並提供實用的方法和易於遵循的範例。本書涵蓋了廣泛的應用:從分析和 NLP 到計算機視覺領域。您將處理的一些應用包括股票價格預測、推薦引擎、構建聊天機器人、面部表情識別系統等。 我們涵蓋的問題範例包括為您的數據集和使用案例識別合適的算法、創建和標記數據集、獲取足夠的乾淨數據以進行處理、識別異常值、過擬合數據集、超參數調整等。在這裡,您還將學會進行更及時和準確的預測。此外,您將處理更高級的使用案例,例如構建遊戲機器人、為醫療文件構建提取式摘要工具,並解決在構建 ML 模型時面臨的問題。在本書結束時,您將能夠根據需求微調模型,以實現最大的生產力。
您將學到的內容
選擇合適的算法以獲得最佳的 ML 解決方案
有效地使用 ML 算法進行預測分析
使用股票指數值預測股票價格
為電子商務平台執行客戶分析
為各個領域構建推薦引擎
為健康領域構建 NLP 應用
使用不同的 NLP 技術構建語言生成應用
構建計算機視覺應用,例如面部情感識別
本書適合對象
本書適合中級用戶,例如機器學習工程師、數據工程師、數據科學家等,這些人希望在日常工作中解決從簡單到複雜的機器學習問題,並構建強大而高效的機器學習模型。對機器學習概念的基本理解和一些 Python 編程經驗是您開始閱讀本書所需的全部。