Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras
暫譯: 精通 TensorFlow 1.x:使用 TensorFlow 1.x 和 Keras 的進階機器學習與深度學習概念
Armando Fandango
- 出版商: Packt Publishing
- 出版日期: 2018-01-22
- 售價: $1,660
- 貴賓價: 9.5 折 $1,577
- 語言: 英文
- 頁數: 474
- 裝訂: Paperback
- ISBN: 1788292065
- ISBN-13: 9781788292061
-
相關分類:
DeepLearning、TensorFlow、Machine Learning
-
相關翻譯:
精通 TensorFlow (簡中版)
買這商品的人也買了...
-
$4,530$4,304 -
$2,550$2,423 -
$1,800$1,710 -
$2,280$2,166 -
$2,100$1,995 -
$403PyTorch 深度學習與電腦視覺實踐
相關主題
商品描述
Build, scale, and deploy deep neural network models using the star libraries in Python
Key Features
- Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras
- Build, deploy, and scale end-to-end deep neural network models in a production environment
- Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes
Book Description
TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs.
This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images.
You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected.
The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.
What you will learn
- Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras
- Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks
- Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow
- Scale and deploy production models with distributed and high-performance computing on GPU and clusters
- Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R
- Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices
- Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters
Table of Contents
- Tensorflow 101
- High Level Libraries For TensorFlow
- Keras 101
- Classical Machine Learning with TensorFlow
- Neural Networks and MLP with TensorFlow and Keras
- RNN with TensorFlow and Keras
- RNN for Time Series Data with TensorFlow and Keras
- NLP for Text Data with TensorFlow and Keras
- CNN with TensorFlow and Keras
- Autoencoder with TensorFlow and Keras
- TensorFlow Models in Production with TF Serving
- Transfer Learning and Pre-Trained Models
- Deep Reinforcement Learning
- Generative Adversarial Networks
- Distributed Models with TensorFlow Clusters
- TensorFlow on Mobile and Embedded Platforms
- TensorFlow and Keras in R
- Debugging TensorFlow Models
- Appendix A: TPU
商品描述(中文翻譯)
**使用 Python 的明星庫構建、擴展和部署深度神經網絡模型**
#### 主要特點
- 深入探討使用 TensorFlow 和 Keras 的高級機器學習和深度學習應用案例
- 在生產環境中構建、部署和擴展端到端的深度神經網絡模型
- 學習如何在移動設備上部署 TensorFlow,以及在 GPU、集群和 Kubernetes 上部署分佈式 TensorFlow
#### 書籍描述
TensorFlow 是最受歡迎的數值計算庫,專為分佈式、雲端和移動環境從零開始構建。TensorFlow 將數據表示為張量(tensors),將計算表示為圖(graphs)。
本書是一本全面的指南,讓您探索 TensorFlow 1.x 的高級功能。深入了解 TensorFlow Core、Keras、TF Estimators、TFLearn、TF Slim、Pretty Tensor 和 Sonnet。利用 TensorFlow 和 Keras 的強大功能構建深度學習模型,使用轉移學習(transfer learning)、生成對抗網絡(generative adversarial networks)和深度強化學習(deep reinforcement learning)等概念。在整本書中,您將獲得使用各種數據集的實踐經驗,例如 MNIST、CIFAR-10、PTB、text8 和 COCO-Images。
您將學習 TensorFlow 1.x 的高級功能,例如使用 TF Clusters 的分佈式 TensorFlow,使用 TensorFlow Serving 部署生產模型,並在 Android 和 iOS 平台上為移動和嵌入式設備構建和部署 TensorFlow 模型。您將看到如何在 R 統計軟件中調用 TensorFlow 和 Keras API,並學習當基於 TensorFlow API 的代碼未按預期工作時所需的調試技術。
本書幫助您獲得對 TensorFlow 的深入了解,使您成為解決人工智慧問題的首選人選。在本指南結束時,您將掌握 TensorFlow 和 Keras 的所有功能,並獲得構建更智能、更快速和高效的機器學習和深度學習系統所需的技能。
#### 您將學到什麼
- 掌握深度學習的高級概念,如轉移學習、強化學習、生成模型等,使用 TensorFlow 和 Keras
- 執行監督式(分類和回歸)和非監督式(聚類)學習以解決機器學習任務
- 使用 TensorFlow 構建端到端的深度學習(CNN、RNN 和自編碼器)模型
- 在 GPU 和集群上使用分佈式和高性能計算擴展和部署生產模型
- 使用 Keras、TFLearn 和 R 構建與多層感知器(multilayer perceptrons)配合的 TensorFlow 模型
- 通過在 iOS 和 Android 設備上構建和部署 TensorFlow 模型來了解智能應用的功能
- 通過在 Kubernetes 和 TensorFlow Clusters 上進行分佈式訓練和部署來增強 TensorFlow 的性能
#### 目錄
1. TensorFlow 101
2. TensorFlow 的高級庫
3. Keras 101
4. 使用 TensorFlow 的經典機器學習
5. 使用 TensorFlow 和 Keras 的神經網絡和 MLP
6. 使用 TensorFlow 和 Keras 的 RNN
7. 使用 TensorFlow 和 Keras 的時間序列數據 RNN
8. 使用 TensorFlow 和 Keras 的文本數據 NLP
9. 使用 TensorFlow 和 Keras 的 CNN
10. 使用 TensorFlow 和 Keras 的自編碼器
11. 使用 TF Serving 的生產中的 TensorFlow 模型
12. 轉移學習和預訓練模型
13. 深度強化學習
14. 使用 TensorFlow Clusters 的分佈式模型
15. 移動和嵌入式平台上的 TensorFlow
16. R 中的 TensorFlow 和 Keras
17. 調試 TensorFlow 模型
18. 附錄 A:TPU