Practical Time Series Analysis (Paperback)
暫譯: 實用時間序列分析 (平裝本)

Dr. Avishek Pal, Dr. PKS Prakash

買這商品的人也買了...

商品描述

Step by Step guide filled with real world practical examples.

About This Book

  • Get your first experience with data analysis with one of the most powerful types of analysis—time-series.
  • Find patterns in your data and predict the future pattern based on historical data.
  • Learn the statistics, theory, and implementation of Time-series methods using this example-rich guide

Who This Book Is For

This book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods.

What You Will Learn

  • Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project
  • Develop an understanding of loading, exploring, and visualizing time-series data
  • Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series
  • Take advantage of exponential smoothing to tackle noise in time series data
  • Learn how to use auto-regressive models to make predictions using time-series data
  • Build predictive models on time series using techniques based on auto-regressive moving averages
  • Discover recent advancements in deep learning to build accurate forecasting models for time series
  • Gain familiarity with the basics of Python as a powerful yet simple to write programming language

In Detail

Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.

The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.

The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python.

Style and approach

This book takes the readers from the basic to advance level of Time series analysis in a very practical and real world use cases.

商品描述(中文翻譯)

**逐步指南,充滿真實世界的實用範例。**

## 本書介紹

- 獲得您第一次的數據分析體驗,使用最強大的分析類型之一——時間序列分析。
- 在您的數據中尋找模式,並根據歷史數據預測未來的模式。
- 使用這本充滿範例的指南學習時間序列方法的統計學、理論和實作。

## 本書適合誰

本書適合任何想要分析隨時間和/或頻率變化的數據的人。具備統計背景將有助於快速學習分析方法。

## 您將學到什麼

- 理解時間序列分析的基本概念,並認識其對數據科學專案成功的重要性。
- 發展加載、探索和可視化時間序列數據的理解。
- 探索自相關性,並獲得處理非平穩時間序列的統計技術知識。
- 利用指數平滑技術來應對時間序列數據中的噪聲。
- 學習如何使用自回歸模型來進行時間序列數據的預測。
- 基於自回歸移動平均技術構建時間序列的預測模型。
- 發現深度學習的最新進展,以建立準確的時間序列預測模型。
- 熟悉 Python 的基本知識,這是一種強大且易於編寫的程式語言。

## 詳細內容

時間序列分析使我們能夠分析隨時間生成的數據,並且觀察之間存在順序依賴性。本書描述了專門的數學技巧和技術,旨在探索時間序列數據的內部結構,並生成強大的描述性和預測性見解。此外,本書充滿了使用 Python 開發的尖端解決方案的時間序列及其分析的真實範例。

本書從描述性分析開始,創建內部結構(如趨勢、季節性和自相關性)的深刻可視化。接下來,描述了處理自相關性和非平穩時間序列的統計方法。隨後介紹指數平滑技術,以從嘈雜的時間序列數據中產生有意義的見解。在這一點上,我們將重點轉向預測分析,並介紹自回歸模型,如 ARMA 和 ARIMA,用於時間序列預測。之後,介紹強大的深度學習方法,以在缺乏領域知識的情況下開發複雜時間序列的準確預測模型。所有主題都通過真實問題場景及其在 Python 中的最佳實踐實現的解決方案進行說明。

本書以附錄結束,簡要討論使用 Python 編程和解決數據科學問題。

## 風格與方法

本書將讀者從時間序列分析的基本知識帶到進階水平,並提供非常實用的真實案例。