Java Data Analysis
暫譯: Java 數據分析

John R. Hubbard

商品描述

Key Features

  • Get your basics right for data analysis with Java and make sense of your data through effective visualizations.
  • Use various Java APIs and tools such as Rapidminer and WEKA for effective data analysis and machine learning.
  • This is your companion to understanding and implementing a solid data analysis solution using Java

Book Description

Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the aim of discovering useful information. Java is one of the most popular languages to perform your data analysis tasks.

This book will help you learn the tools and techniques in Java to conduct data analysis without any hassle. After getting a quick overview of what data science is and the steps involved in the process, you’ll learn the statistical data analysis techniques and implement them using the popular Java APIs and libraries. Through practical examples, you will also learn the machine learning concepts such as classification and regression.

In the process, you’ll familiarize yourself with tools such as Rapidminer and WEKA and see how these Java-based tools can be used effectively for analysis. You will also learn how to analyze text and other types of multimedia. Learn to work with relational, NoSQL, and time-series data. This book will also show you how you can utilize different Java-based libraries to create insightful and easy to understand plots and graphs.

By the end of this book, you will have a solid understanding of the various data analysis techniques, and how to implement them using Java.

What you will learn

  • Develop Java programs that analyze data sets of nearly any size, including text
  • Implement important machine learning algorithms such as regression, classification, and clustering
  • Interface with and apply standard open source Java libraries and APIs to analyze and visualize data
  • Process data from both relational and non-relational databases and from time-series data
  • Employ Java tools to visualize data in various forms
  • Understand multimedia data analysis algorithms and implement them in Java.

About the Author

John R. Hubbard has been doing computer-based data analysis for over 40 years at colleges and universities in Pennsylvania and Virginia. He holds an MSc in computer science from Penn State University and a PhD in mathematics from the University of Michigan. He is currently a professor of mathematics and computer science, Emeritus, at the University of Richmond, where he has been teaching data structures, database systems, numerical analysis, and big data.

Dr. Hubbard has published many books and research papers, including six other books on computing. Some of these books have been translated into German, French, Chinese, and five other languages. He is also an amateur timpanist.

Table of Contents

  1. Introduction to Data Analysis
  2. Data Preprocessing
  3. Data Visualization
  4. Statistics: Elementary statistical methods and their implementation in Java
  5. Relational Database Access
  6. Regression Analysis
  7. Classification Analysis
  8. Cluster Analysis
  9. Recommender Systems
  10. Working with NoSQL Databases
  11. Big Data Analysis with Java
  12. Appendix A

商品描述(中文翻譯)

**主要特點**

- 透過有效的視覺化,正確掌握 Java 的數據分析基礎,並理解您的數據。
- 使用各種 Java API 和工具,如 Rapidminer 和 WEKA,進行有效的數據分析和機器學習。
- 這是您理解和實施穩固數據分析解決方案的伴侶,使用 Java。

**書籍描述**

數據分析是一個檢查、清理、轉換和建模數據的過程,旨在發現有用的信息。Java 是執行數據分析任務的最受歡迎的語言之一。

本書將幫助您學習在 Java 中進行數據分析的工具和技術,讓您輕鬆上手。在快速了解數據科學及其過程中的步驟後,您將學習統計數據分析技術,並使用流行的 Java API 和庫來實現這些技術。通過實際範例,您還將學習機器學習概念,如分類和回歸。

在此過程中,您將熟悉 Rapidminer 和 WEKA 等工具,並了解這些基於 Java 的工具如何有效地用於分析。您還將學習如何分析文本和其他類型的多媒體數據。學習處理關聯型、NoSQL 和時間序列數據。本書還將向您展示如何利用不同的基於 Java 的庫來創建有見地且易於理解的圖表和圖形。

在本書結束時,您將對各種數據分析技術有扎實的理解,並知道如何使用 Java 實施這些技術。

**您將學到的內容**

- 開發分析幾乎任何大小數據集(包括文本)的 Java 程式。
- 實施重要的機器學習算法,如回歸、分類和聚類。
- 與標準開源 Java 庫和 API 進行接口,並應用它們來分析和視覺化數據。
- 處理來自關聯型和非關聯型數據庫以及時間序列數據的數據。
- 使用 Java 工具以各種形式視覺化數據。
- 理解多媒體數據分析算法並在 Java 中實施它們。

**關於作者**

**John R. Hubbard** 在賓夕法尼亞州和維吉尼亞州的學院和大學從事計算機數據分析已有超過 40 年的經驗。他擁有賓州州立大學的計算機科學碩士學位和密西根大學的數學博士學位。他目前是里士滿大學的數學和計算機科學名譽教授,教授數據結構、數據庫系統、數值分析和大數據。

Hubbard 博士已出版多本書籍和研究論文,包括六本計算機相關的書籍。其中一些書籍已被翻譯成德語、法語、中文和其他五種語言。他也是一名業餘的定音鼓演奏者。

**目錄**

1. 數據分析簡介
2. 數據預處理
3. 數據視覺化
4. 統計學:基本統計方法及其在 Java 中的實施
5. 關聯型數據庫訪問
6. 回歸分析
7. 分類分析
8. 聚類分析
9. 推薦系統
10. 使用 NoSQL 數據庫
11. 使用 Java 進行大數據分析
12. 附錄 A