Hands-On Deep Learning with TensorFlow
Dan Van Boxel
- 出版商: Packt Publishing
- 出版日期: 2017-07-31
- 定價: $1,190
- 售價: 5.0 折 $595
- 語言: 英文
- 頁數: 174
- 裝訂: Paperback
- ISBN: 1787282775
- ISBN-13: 9781787282773
-
相關分類:
DeepLearning、TensorFlow
-
相關翻譯:
基於 TensorFlow 的深度學習 : 揭示數據隱含的奧秘 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,720$2,584 -
$680$537 -
$580$493 -
$360$284 -
$250鳳凰計畫:一個 IT計畫的傳奇故事 (The Phoenix Project : A Novel about IT, DevOps, and Helping your business win)(沙盤特別版)
-
$580$493 -
$2,380$2,261 -
$390$308 -
$550$468 -
$403阻擊黑客:技術、策略與案例
-
$590$460 -
$550$435 -
$500$395 -
$825Spring Microservices in Action (Paperback)
-
$580$458 -
$540$427 -
$1,800$1,710 -
$1,224Python Machine Learning, 2/e (Paperback)
-
$650$585 -
$7,100$6,745 -
$680$537 -
$760$646 -
$500$390 -
$450$356 -
$500$390
相關主題
商品描述
Key Features
- Explore various possibilities with deep learning and gain amazing insights from data using Google's brainchild-- TensorFlow
- Want to learn what more can be done with deep learning? Explore various neural networks with the help of this comprehensive guide
- Rich in concepts, advanced guide on deep learning that will give you background to innovate in your environment
Book Description
Dan Van Boxel's Deep Learning with TensorFlow is based on Dan's best-selling TensorFlow video course. With deep learning going mainstream, making sense of data and getting accurate results using deep networks is possible. Dan Van Boxel will be your guide to exploring the possibilities with deep learning; he will enable you to understand data like never before. With the efficiency and simplicity of TensorFlow, you will be able to process your data and gain insights that will change how you look at data.
With Dan's guidance, you will dig deeper into the hidden layers of abstraction using raw data. Dan then shows you various complex algorithms for deep learning and various examples that use these deep neural networks. You will also learn how to train your machine to craft new features to make sense of deeper layers of data.
In this book, Dan shares his knowledge across topics such as logistic regression, convolutional neural networks, recurrent neural networks, training deep networks, and high level interfaces. With the help of novel practical examples, you will become an ace at advanced multilayer networks, image recognition, and beyond.
What you will learn
- Set up your computing environment and install TensorFlow
- Build simple TensorFlow graphs for everyday computations
- Apply logistic regression for classification with TensorFlow
- Design and train a multilayer neural network with TensorFlow
- Intuitively understand convolutional neural networks for image recognition
- Bootstrap a neural network from simple to more accurate models
- See how to use TensorFlow with other types of networks
- Program networks with SciKit-Flow, a high-level interface to TensorFlow
About the Author
Dan Van Boxel is a data scientist and machine learning engineer with over 10 years of experience. He is most well-known for Dan Does Data, a YouTube livestream demonstrating the power and pitfalls of neural networks. He has developed and applied novel statistical models of machine learning to topics such as accounting for truck traffic on highways, travel time outlier detection, and other areas. Dan has also published research articles and presented findings at the Transportation Research Board and other academic journals.
Table of Contents
- Getting Started
- Deep Neural Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Wrapping Up
商品描述(中文翻譯)
主要特點
- 使用深度學習探索各種可能性,並使用Google的產物TensorFlow從數據中獲得驚人的洞察力
- 想要了解深度學習還能做什麼?通過這本全面指南,探索各種神經網絡
- 豐富的概念,深度學習的高級指南,將為您提供創新環境的背景知識
書籍描述
Dan Van Boxel的《使用TensorFlow進行深度學習》基於Dan的暢銷TensorFlow視頻課程。隨著深度學習逐漸普及,利用深度網絡理解數據並獲得準確結果成為可能。Dan Van Boxel將成為您探索深度學習可能性的指南;他將使您能夠以前所未有的方式理解數據。通過TensorFlow的效率和簡單性,您將能夠處理數據並獲得改變您對數據看法的洞察力。
在Dan的指導下,您將使用原始數據深入挖掘抽象的隱藏層。然後,Dan向您展示了各種用於深度學習的複雜算法以及使用這些深度神經網絡的各種示例。您還將學習如何訓練機器以創建新特徵,以理解更深層次的數據。
在本書中,Dan分享了他在邏輯回歸、卷積神經網絡、循環神經網絡、訓練深度網絡和高級接口等主題上的知識。通過新穎的實際示例,您將成為高級多層網絡、圖像識別等方面的專家。
您將學到什麼
- 設置計算環境並安裝TensorFlow
- 構建用於日常計算的簡單TensorFlow圖形
- 使用TensorFlow進行邏輯回歸進行分類
- 設計並訓練使用TensorFlow的多層神經網絡
- 直觀理解用於圖像識別的卷積神經網絡
- 從簡單模型到更準確模型的引導神經網絡
- 了解如何將TensorFlow與其他類型的網絡一起使用
- 使用SciKit-Flow進行網絡編程,這是一個高級接口到TensorFlow
關於作者
Dan Van Boxel是一位擁有超過10年經驗的數據科學家和機器學習工程師。他最著名的是Dan Does Data,這是一個YouTube直播,展示了神經網絡的威力和陷阱。他開發並應用了新穎的機器學習統計模型,應用於議題,如公路上的卡車交通計算、旅行時間異常檢測等。Dan還發表了研究論文並在交通研究委員會和其他學術期刊上發表了研究成果。
目錄
- 入門
- 深度神經網絡
- 卷積神經網絡
- 循環神經網絡
- 總結