Practical Data Science Cookbook Second Edition
暫譯: 實用數據科學食譜(第二版)
Prabhanjan Tattar, Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta
- 出版商: Packt Publishing
- 出版日期: 2017-06-30
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 434
- 裝訂: Paperback
- ISBN: 1787129624
- ISBN-13: 9781787129627
-
相關分類:
Data Science
-
相關翻譯:
數據科學實戰手冊 第2版 (簡中版)
相關主題
商品描述
Over 85 recipes to help you complete real-world data science projects in R and Python
About This Book
- Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data
- Get beyond the theory and implement real-world projects in data science using R and Python
- Easy-to-follow recipes will help you understand and implement the numerical computing concepts
Who This Book Is For
If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python.
What You Will Learn
- Learn and understand the installation procedure and environment required for R and Python on various platforms
- Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python
- Build a predictive model and an exploratory model
- Analyze the results of your model and create reports on the acquired data
- Build various tree-based methods and Build random forest
In Detail
As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use.
Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis-R and Python.
Style and approach
This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization
商品描述(中文翻譯)
超過 85 個食譜,幫助您在 R 和 Python 中完成真實世界的資料科學專案
本書介紹
- 處理資料科學流程中的每一個步驟,並利用它來獲取、清理、分析和視覺化您的資料
- 超越理論,使用 R 和 Python 實作真實世界的資料科學專案
- 易於遵循的食譜將幫助您理解和實作數值計算概念
本書適合誰閱讀
如果您是一位渴望成為資料科學家的學習者,想透過實作的真實世界專案範例來學習資料科學和數值程式設計概念,那麼這本書就是為您而寫。無論您是資料科學的新手還是經驗豐富的專家,您都將從學習真實世界資料科學專案的結構以及 R 和 Python 中的程式範例中受益。
您將學到什麼
- 學習並理解在各種平台上安裝 R 和 Python 所需的程序和環境
- 通過 R 和 Python 實作各種資料科學概念,如獲取、清理和處理資料,為分析準備資料
- 建立預測模型和探索性模型
- 分析模型的結果並針對獲取的資料創建報告
- 建立各種基於樹的方法並建立隨機森林
詳細內容
隨著每年產生的資料量不斷增加,分析資料並從中創造價值的需求比以往任何時候都更為重要。知道如何有效利用資料的公司將比那些不知所措的公司擁有競爭優勢。因此,對於具備分析和技術能力的人才的需求將會不斷增加,這些人才能夠從資料中提取有價值的見解並創造出能夠實現這些見解的解決方案。
本書從基礎開始,涵蓋如何設置您的數值程式設計環境,介紹資料科學流程,並以逐步的格式指導您完成幾個資料專案。通過逐章逐步地完成每個步驟,您將迅速熟悉這個過程,並學會如何將其應用於各種情況,並使用 R 和 Python 這兩種最受歡迎的資料分析程式語言的範例。
風格與方法
這本逐步指南提供了真實世界資料科學任務的實作範例。每個食譜專注於資料科學流程中涉及的特定任務,從準備資料集到分析和視覺化。