Practical Predictive Analytics
Ralph Winters
- 出版商: Packt Publishing
- 出版日期: 2017-06-30
- 售價: $2,180
- 貴賓價: 9.5 折 $2,071
- 語言: 英文
- 頁數: 576
- 裝訂: Paperback
- ISBN: 1785886185
- ISBN-13: 9781785886188
-
相關分類:
Machine Learning
-
相關翻譯:
實用預測分析 (簡中版)
相關主題
商品描述
Make sense of your data and predict the unpredictable
About This Book
- A unique book that centers around develop six key practical skills needed to develop and implement predictive analytics
- Apply the principles and techniques of predictive analytics to effectively interpret big data
- Solve real-world analytical problems with the help of practical case studies and real-world scenarios taken from the world of healthcare, marketing, and other business domains
Who This Book Is For
This book is for those with a mathematical/statistics background who wish to understand the concepts, techniques, and implementation of predictive analytics to resolve complex analytical issues. Basic familiarity with a programming language of R is expected.
What You Will Learn
- Master the core predictive analytics algorithm which are used today in business
- Learn to implement the six steps for a successful analytics project
- Classify the right algorithm for your requirements
- Use and apply predictive analytics to research problems in healthcare
- Implement predictive analytics to retain and acquire your customers
- Use text mining to understand unstructured data
- Develop models on your own PC or in Spark/Hadoop environments
- Implement predictive analytics products for customers
In Detail
This is the go-to book for anyone interested in the steps needed to develop predictive analytics solutions with examples from the world of marketing, healthcare, and retail. We'll get started with a brief history of predictive analytics and learn about different roles and functions people play within a predictive analytics project. Then, we will learn about various ways of installing R along with their pros and cons, combined with a step-by-step installation of RStudio, and a description of the best practices for organizing your projects.
On completing the installation, we will begin to acquire the skills necessary to input, clean, and prepare your data for modeling. We will learn the six specific steps needed to implement and successfully deploy a predictive model starting from asking the right questions through model development and ending with deploying your predictive model into production. We will learn why collaboration is important and how agile iterative modeling cycles can increase your chances of developing and deploying the best successful model.
We will continue your journey in the cloud by extending your skill set by learning about Databricks and SparkR, which allow you to develop predictive models on vast gigabytes of data.
Style and Approach
This book takes a practical hands-on approach wherein the algorithms will be explained with the help of real-world use cases. It is written in a well-researched academic style which is a great mix of theoretical and practical information. Code examples are supplied for both theoretical concepts as well as for the case studies. Key references and summaries will be provided at the end of each chapter so that you can explore those topics on their own.
商品描述(中文翻譯)
**理解您的數據並預測不可預測的事物**
## 本書介紹
- 一本獨特的書籍,專注於發展六項關鍵實用技能,以開發和實施預測分析。
- 應用預測分析的原則和技術,有效解釋大數據。
- 通過實際案例研究和來自醫療保健、行銷及其他商業領域的真實場景,解決現實世界的分析問題。
## 本書適合誰
本書適合具有數學/統計背景的人,旨在理解預測分析的概念、技術及其實施,以解決複雜的分析問題。預期讀者對 R 程式語言有基本的熟悉度。
## 您將學到什麼
- 精通當今商業中使用的核心預測分析算法。
- 學習實施成功分析專案的六個步驟。
- 為您的需求選擇合適的算法。
- 使用預測分析解決醫療保健中的研究問題。
- 實施預測分析以保留和獲取客戶。
- 使用文本挖掘理解非結構化數據。
- 在自己的電腦或 Spark/Hadoop 環境中開發模型。
- 為客戶實施預測分析產品。
## 詳細內容
這是一本針對任何有興趣了解開發預測分析解決方案所需步驟的讀者的必備書籍,並提供來自行銷、醫療保健和零售領域的範例。我們將從預測分析的簡要歷史開始,了解人們在預測分析專案中所扮演的不同角色和功能。接著,我們將學習各種安裝 R 的方法及其優缺點,並逐步安裝 RStudio,還有組織專案的最佳實踐說明。
完成安裝後,我們將開始獲取輸入、清理和準備數據以進行建模所需的技能。我們將學習實施和成功部署預測模型所需的六個具體步驟,從提出正確問題開始,經過模型開發,最終將預測模型部署到生產環境。我們將了解為何協作很重要,以及敏捷迭代建模循環如何提高開發和部署最佳成功模型的機會。
我們將在雲端繼續您的旅程,通過學習 Databricks 和 SparkR 擴展您的技能,這使您能夠在大量的數據中開發預測模型。
## 風格與方法
本書採取實用的動手方式,通過真實案例來解釋算法。它以良好研究的學術風格撰寫,理論與實踐信息的完美結合。對於理論概念和案例研究,均提供代碼範例。每章結尾將提供關鍵參考和摘要,以便您能夠自行探索這些主題。