Real-Time Big Data Analytics(Paperback)
暫譯: 即時大數據分析(平裝本)
Sumit Gupta, Shilpi
- 出版商: Packt Publishing
- 出版日期: 2016-02-29
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 326
- 裝訂: Paperback
- ISBN: 1784391409
- ISBN-13: 9781784391409
-
相關分類:
大數據 Big-data、Data Science
海外代購書籍(需單獨結帳)
商品描述
Design, process, and analyze large sets of complex data in real time
About This Book
- Get acquainted with transformations and database-level interactions, and ensure the reliability of messages processed using Storm
- Implement strategies to solve the challenges of real-time data processing
- Load datasets, build queries, and make recommendations using Spark SQL
Who This Book Is For
If you are a Big Data architect, developer, or a programmer who wants to develop applications/frameworks to implement real-time analytics using open source technologies, then this book is for you.
What You Will Learn
- Explore big data technologies and frameworks
- Work through practical challenges and use cases of real-time analytics versus batch analytics
- Develop real-word use cases for processing and analyzing data in real-time using the programming paradigm of Apache Storm
- Handle and process real-time transactional data
- Optimize and tune Apache Storm for varied workloads and production deployments
- Process and stream data with Amazon Kinesis and Elastic MapReduce
- Perform interactive and exploratory data analytics using Spark SQL
- Develop common enterprise architectures/applications for real-time and batch analytics
In Detail
Enterprise has been striving hard to deal with the challenges of data arriving in real time or near real time.
Although there are technologies such as Storm and Spark (and many more) that solve the challenges of real-time data, using the appropriate technology/framework for the right business use case is the key to success. This book provides you with the skills required to quickly design, implement and deploy your real-time analytics using real-world examples of big data use cases.
From the beginning of the book, we will cover the basics of varied real-time data processing frameworks and technologies. We will discuss and explain the differences between batch and real-time processing in detail, and will also explore the techniques and programming concepts using Apache Storm.
Moving on, we'll familiarize you with “Amazon Kinesis” for real-time data processing on cloud. We will further develop your understanding of real-time analytics through a comprehensive review of Apache Spark along with the high-level architecture and the building blocks of a Spark program.
You will learn how to transform your data, get an output from transformations, and persist your results using Spark RDDs, using an interface called Spark SQL to work with Spark.
At the end of this book, we will introduce Spark Streaming, the streaming library of Spark, and will walk you through the emerging Lambda Architecture (LA), which provides a hybrid platform for big data processing by combining real-time and precomputed batch data to provide a near real-time view of incoming data.
Style and approach
This step-by-step is an easy-to-follow, detailed tutorial, filled with practical examples of basic and advanced features.
Each topic is explained sequentially and supported by real-world examples and executable code snippets.
商品描述(中文翻譯)
設計、處理和分析大量複雜數據的即時數據
關於本書
- 熟悉轉換和資料庫層級的互動,確保使用 Storm 處理的消息的可靠性
- 實施策略以解決即時數據處理的挑戰
- 載入數據集,建立查詢,並使用 Spark SQL 提出建議
本書適合誰
如果您是大數據架構師、開發人員或希望使用開源技術開發應用程式/框架以實現即時分析的程式設計師,那麼本書適合您。
您將學到什麼
- 探索大數據技術和框架
- 解決即時分析與批次分析的實際挑戰和使用案例
- 使用 Apache Storm 的程式設計範式開發即時處理和分析數據的實際使用案例
- 處理和處理即時交易數據
- 優化和調整 Apache Storm 以應對不同的工作負載和生產部署
- 使用 Amazon Kinesis 和 Elastic MapReduce 處理和串流數據
- 使用 Spark SQL 進行互動式和探索性數據分析
- 為即時和批次分析開發常見的企業架構/應用程式
詳細內容
企業一直在努力應對即時或近即時到達的數據挑戰。
儘管有 Storm 和 Spark(以及許多其他技術)等技術可以解決即時數據的挑戰,但為正確的商業使用案例選擇適當的技術/框架是成功的關鍵。本書提供了您所需的技能,以便快速設計、實施和部署您的即時分析,並使用大數據使用案例的實際範例。
從本書的開始,我們將涵蓋各種即時數據處理框架和技術的基本知識。我們將詳細討論和解釋批次處理和即時處理之間的差異,並探索使用 Apache Storm 的技術和程式設計概念。
接下來,我們將使您熟悉“Amazon Kinesis”以進行雲端的即時數據處理。我們將通過對 Apache Spark 的全面回顧,進一步加深您對即時分析的理解,並介紹 Spark 程式的高層架構和基本組件。
您將學習如何轉換數據,從轉換中獲得輸出,並使用 Spark RDDs 持久化您的結果,使用一個稱為 Spark SQL 的介面來與 Spark 進行互動。
在本書的最後,我們將介紹 Spark Streaming,Spark 的串流庫,並將引導您了解新興的 Lambda 架構(LA),該架構通過結合即時和預計算的批次數據,提供一個混合平台以實現大數據處理,從而提供即時接收數據的近即時視圖。
風格與方法
這本逐步指南是一個易於遵循的詳細教程,充滿了基本和進階功能的實用範例。
每個主題都按順序解釋,並由實際範例和可執行的程式碼片段支持。