Julia for Data Science

Anshul Joshi

  • 出版商: Packt Publishing
  • 出版日期: 2016-09-30
  • 售價: $2,180
  • 貴賓價: 9.5$2,071
  • 語言: 英文
  • 頁數: 348
  • 裝訂: Paperback
  • ISBN: 1785289691
  • ISBN-13: 9781785289699
  • 相關分類: 程式語言Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Key Features

  • An in-depth exploration of Julia's growing ecosystem of packages
  • Work with the most powerful open-source libraries for deep learning, data wrangling, and data visualization
  • Learn about deep learning using Mocha.jl and give speed and high performance to data analysis on large data sets

Book Description

Julia is a fast and high performing language that's perfectly suited to data science with a mature package ecosystem and is now feature complete. It is a good tool for a data science practitioner. There was a famous post at Harvard Business Review that Data Scientist is the sexiest job of the 21st century. (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century).

This book will help you get familiarised with Julia's rich ecosystem, which is continuously evolving, allowing you to stay on top of your game.

This book contains the essentials of data science and gives a high-level overview of advanced statistics and techniques. You will dive in and will work on generating insights by performing inferential statistics, and will reveal hidden patterns and trends using data mining. This has the practical coverage of statistics and machine learning. You will develop knowledge to build statistical models and machine learning systems in Julia with attractive visualizations.

You will then delve into the world of Deep learning in Julia and will understand the framework, Mocha.jl with which you can create artificial neural networks and implement deep learning.

This book addresses the challenges of real-world data science problems, including data cleaning, data preparation, inferential statistics, statistical modeling, building high-performance machine learning systems and creating effective visualizations using Julia.

What you will learn

  • Apply statistical models in Julia for data-driven decisions
  • Understanding the process of data munging and data preparation using Julia
  • Explore techniques to visualize data using Julia and D3 based packages
  • Using Julia to create self-learning systems using cutting edge machine learning algorithms
  • Create supervised and unsupervised machine learning systems using Julia. Also, explore ensemble models
  • Build a recommendation engine in Julia
  • Dive into Julia’s deep learning framework and build a system using Mocha.jl

About the Author

Anshul Joshi is a data science professional with more than 2 years of experience primarily in data munging, recommendation systems, predictive modeling, and distributed computing. He is a deep learning and AI enthusiast. Most of the time, he can be caught exploring GitHub or trying anything new on which he can get his hands on. He blogs on anshuljoshi.xyz.

Table of Contents

  1. The Groundwork – Julia's Environment
  2. Data Munging
  3. Data Exploration
  4. Deep Dive into Inferential Statistics
  5. Making Sense of Data Using Visualization
  6. Supervised Machine Learning
  7. Unsupervised Machine Learning
  8. Creating Ensemble Models
  9. Time Series
  10. Collaborative Filtering and Recommendation System
  11. Introduction to Deep Learning

商品描述(中文翻譯)

主要特點



  • 深入探索Julia不斷增長的套件生態系統

  • 使用最強大的開源庫進行深度學習、數據整理和數據可視化

  • 使用Mocha.jl進行深度學習,為大型數據集上的數據分析提供速度和高性能

書籍描述


Julia是一種快速且高效的語言,非常適合數據科學,具有成熟的套件生態系統並且功能完整。它是數據科學從業者的好工具。哈佛商業評論曾發表了一篇著名的文章,稱數據科學家是21世紀最性感的職業。(https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century)。


本書將幫助您熟悉不斷發展的Julia豐富生態系統,使您能夠保持領先地位。


本書包含數據科學的基本知識,並提供高層次的高級統計和技術概述。您將深入研究並通過進行推論統計來生成洞察力,並使用數據挖掘揭示隱藏的模式和趨勢。本書實用地涵蓋了統計學和機器學習。您將學習使用Julia建立統計模型和機器學習系統,並創建具有吸引力的可視化效果。


然後,您將深入瞭解Julia中的深度學習世界,並了解使用Mocha.jl框架創建人工神經網絡和實現深度學習的方法。


本書解決了現實世界數據科學問題的挑戰,包括數據清理、數據準備、推論統計、統計建模、構建高性能機器學習系統以及使用Julia創建有效的可視化效果。

您將學到什麼



  • 在Julia中應用統計模型進行數據驅動的決策

  • 使用Julia進行數據整理和數據準備的過程

  • 探索使用Julia和基於D3的套件可視化數據的技術

  • 使用Julia創建使用尖端機器學習算法的自學系統

  • 使用Julia創建監督和非監督機器學習系統,並探索集成模型

  • 在Julia中建立推薦引擎

  • 深入瞭解Julia的深度學習框架,並使用Mocha.jl建立系統

關於作者


Anshul Joshi是一位擁有超過2年經驗的數據科學專業人士,主要從事數據整理、推薦系統、預測建模和分佈式計算。他是一位深度學習和人工智能的愛好者。他大部分時間都在探索GitHub或嘗試任何新的東西。他在anshuljoshi.xyz上撰寫博客。

目錄



  1. 基礎知識 - Julia的環境

  2. 數據整理

  3. 數據探索

  4. 深入研究推論統計

  5. 使用可視化方法理解數據

  6. 監督機器學習

  7. 非監督機器學習

  8. 創建集成模型

  9. 時間序列

  10. 協同過濾和推薦系統

  11. 深度學習入門