Clean Data - Data Science Strategies for Tackling Dirty Data
暫譯: 清理數據 - 數據科學應對髒數據的策略

Megan Squire

  • 出版商: Packt Publishing
  • 出版日期: 2015-05-29
  • 售價: $1,880
  • 貴賓價: 9.5$1,786
  • 語言: 英文
  • 頁數: 272
  • 裝訂: Paperback
  • ISBN: 1785284010
  • ISBN-13: 9781785284014
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Key Features

  • Grow your data science expertise by filling your toolbox with proven strategies for a wide variety of cleaning challenges
  • Familiarize yourself with the crucial data cleaning processes, and share your own clean data sets with others
  • Complete real-world projects using data from Twitter and Stack Overflow

Book Description

Is much of your time spent doing tedious tasks such as cleaning dirty data, accounting for lost data, and preparing data to be used by others? If so, then having the right tools makes a critical difference, and will be a great investment as you grow your data science expertise.

The book starts by highlighting the importance of data cleaning in data science, and will show you how to reap rewards from reforming your cleaning process. Next, you will cement your knowledge of the basic concepts that the rest of the book relies on: file formats, data types, and character encodings. You will also learn how to extract and clean data stored in RDBMS, web files, and PDF documents, through practical examples.

At the end of the book, you will be given a chance to tackle a couple of real-world projects.

What you will learn

  • Understand the role of data cleaning in the overall data science process
  • Learn the basics of file formats, data types, and character encodings to clean data properly
  • Master critical features of the spreadsheet and text editor for organizing and manipulating data
  • Convert data from one common format to another, including JSON, CSV, and some special-purpose formats
  • Implement three different strategies for parsing and cleaning data found in HTML files on the Web
  • Reveal the mysteries of PDF documents and learn how to pull out just the data you want
  • Develop a range of solutions for detecting and cleaning bad data stored in an RDBMS
  • Create your own clean data sets that can be packaged, licensed, and shared with others
  • Use the tools from this book to complete two real-world projects using data from Twitter and Stack Overflow

About the Author

Megan Squire is a professor of computing sciences at Elon University. She has been collecting and cleaning dirty data for two decades. She is also the leader of FLOSSmole.org, a research project to collect data and analyze it in order to learn how free, libre, and open source software is made.

Table of Contents

  1. Why Do You Need Clean Data?
  2. Fundamentals Formats, Types, and Encodings
  3. Workhorses of Clean Data Spreadsheets and Text Editors
  4. Speaking the Lingua Franca Data Conversions
  5. Collecting and Cleaning Data from the Web
  6. Cleaning Data in Pdf Files
  7. RDBMS Cleaning Techniques
  8. Best Practices for Sharing Your Clean Data
  9. Stack Overflow Project
  10. Twitter Project

商品描述(中文翻譯)

#### 主要特點
- 通過填充您的工具箱,增強您的數據科學專業知識,掌握應對各種清理挑戰的有效策略
- 熟悉關鍵的數據清理過程,並與他人分享您自己的乾淨數據集
- 使用來自 Twitter 和 Stack Overflow 的數據完成實際項目

#### 書籍描述
您是否花了大量時間在清理髒數據、處理丟失數據和準備供他人使用的數據等繁瑣任務上?如果是這樣,擁有合適的工具將會產生關鍵的差異,並且在您增強數據科學專業知識的過程中,這將是一項很好的投資。

本書首先強調數據清理在數據科學中的重要性,並將向您展示如何通過改進清理過程來獲得回報。接下來,您將鞏固本書其餘部分所依賴的基本概念:文件格式、數據類型和字符編碼。您還將通過實際示例學習如何提取和清理存儲在 RDBMS、網頁文件和 PDF 文檔中的數據。

在書的結尾,您將有機會處理幾個實際項目。

#### 您將學到的內容
- 理解數據清理在整體數據科學過程中的角色
- 學習文件格式、數據類型和字符編碼的基本知識,以正確清理數據
- 精通電子表格和文本編輯器的關鍵功能,以組織和操作數據
- 將數據從一種常見格式轉換為另一種格式,包括 JSON、CSV 和一些特殊用途格式
- 實施三種不同的策略來解析和清理網頁上的 HTML 文件中的數據
- 揭示 PDF 文檔的奧秘,學習如何提取您想要的數據
- 開發一系列解決方案,以檢測和清理存儲在 RDBMS 中的壞數據
- 創建您自己的乾淨數據集,這些數據集可以打包、授權並與他人共享
- 使用本書中的工具,完成兩個使用來自 Twitter 和 Stack Overflow 的數據的實際項目

#### 關於作者
**Megan Squire** 是伊隆大學計算科學的教授。她已經收集和清理髒數據達二十年。她還是 FLOSSmole.org 的負責人,這是一個收集數據並進行分析的研究項目,旨在了解自由、開放源代碼軟件的製作過程。

#### 目錄
1. 為什麼您需要乾淨的數據?
2. 基礎知識:格式、類型和編碼
3. 乾淨數據的工作馬:電子表格和文本編輯器
4. 說通用語言:數據轉換
5. 從網絡收集和清理數據
6. 清理 PDF 文件中的數據
7. RDBMS 清理技術
8. 共享您的乾淨數據的最佳實踐
9. Stack Overflow 項目
10. Twitter 項目

最後瀏覽商品 (20)